ДНК. История генетической революции
Шрифт:
Артуру Корнбергу удалось реплицировать вирусную ДНК при помощи ДНК-полимеразы, а добавив фермент лигазу, он сформировал из ДНК непрерывный контур, как это и было устроено в «подопытном вирусе». Теперь «искусственная» вирусная ДНК вела себя точно так же, как и исходная вирусная: обычный вирус размножается в E. coli, и ДНК, выведенная Корнбергом in vitro, вела себя точно так же. Воспользовавшись лишь парой ферментов, простейшими химическими ингредиентами и вирусной ДНК, с которой была снята копия, Корнберг синтезировал биологически активную молекулу. Средства массовой информации тут же сообщили, что Корнберг создал «жизнь в пробирке», а президент Линдон Джонсон назвал этот прорыв «ошеломительным достижением».
Вклад Вернера Арбера в разработку технологии рекомбинантной ДНК, сделанный в 1960-е годы, был не столь предсказуемым.
Первые ответы на поставленные вопросы появились после того, как Арбер открыл новую группу ферментов, расщепляющих ДНК, – так называемые рестриктазы. Они присутствуют в бактериальных клетках и подавляют размножение вирусов, разрезая на фрагменты чужеродную ДНК. Такое разрезание ДНК – это специфическая реакция на конкретные последовательности: фермент разрезает нить ДНК, лишь если обнаружит в ней искомую последовательность. EcoRI была одной из первых открытых рестриктаз – она находит и обрезает нить оснований ГААТТЦ [3] .
3
Этот мотив, как и большинство последовательностей в рестриктазах, является палиндромом, то есть комплементарная последовательность оснований с противоположного конца читается точно так же: ГААТТЦ.
Однако почему бактерия при этом не обрезает собственную ДНК везде, где в ней встречается последовательность ГААТТЦ? Здесь Арбер совершил второе великое открытие. Бактерия синтезирует не только рестриктазу, нацеленную на конкретные последовательности, но и второй фермент, химически модифицирующий те самые последовательности в собственной ДНК, как только они ему попадаются [4] . Измененные таким образом последовательности ГААТТЦ, присутствующие в бактериальной ДНК, не привлекают рестриктазу EcoRI, даже когда фермент словно катком проносится по клетке, повсюду разрезая замеченные вирусные ДНК. Защита бактериального генома от собственной рестриктазы осуществляется с помощью метилирования нуклеотидных остатков аденина и цитозина и называется маскированием.
4
Вот как происходит такая химическая модификация: фермент добавляет к основаниям метильные группы CH3.
В основе следующего этапа революции в молекулярной биологии, связанной с рекомбинантной ДНК, было изучение развития у бактерий антибиотикорезистентности. В 1960-х годах выяснилось, что у многих бактерий такая резистентность возникает не по стандартной схеме через мутацию бактериального генома, а путем импорта так называемой плазмиды: это небольшие молекулы ДНК, находящиеся внутри бактерии, физически отдельные от геномных хромосом и способные реплицироваться автономно и передаваться потомству вместе с остальным бактериальным геномом при делении клеток. В некоторых случаях бактерии сами могут обмениваться плазмидами, и в таком случае бактерия-получатель приобретает «информационный набор», которого у нее не было «при рождении». Таким образом, плазмиды служат средством горизонтального переноса генов. В передаваемом информационном комплекте часто имеются гены, как раз и обеспечивающие резистентность к антибиотикам. Естественный отбор у бактерий, работающий в направлении антибиотикорезистентности, благоприятствует тем клеткам, у которых имеется плазмидный фактор антибиотикоустойчивости.
Плазмида под электронным микроскопом
Первопроходцем в исследовании плазмид был Стенли Коэн из Стэнфордского университета. Коэн выбрал медицинскую карьеру, поскольку его вдохновил на этот путь школьный учитель биологии. Закончив
К началу 1970-х годов имелись все составляющие для получения рекомбинантной ДНК. Сначала было нужно разрезать молекулу ДНК при помощи рестриктаз и выделить интересующие нас последовательности (гены), а затем скопировать интересующий нас фрагмент ДНК и вставить плазмиду в бактериальную клетку, как USB-флешку в подготовленный для нее разъем. За этим процессом последует обычное бинарное деление бактерий, и плазмида с выбранным нами фрагментом ДНК будет реплицироваться точно так же, как и собственный генетический материал, унаследованный бактериальной клеткой. Таким образом, после пересадки единственной плазмиды в бактериальную клетку в процессе последующего деления бактерии в огромных количествах будет воспроизводиться выбранная нами последовательность ДНК. Поскольку мы сами способствуем воспроизводству выбранной клетки, то через короткий промежуток времени мы создадим колонию из миллиардов бактериальных особей, а значит, и миллиарды копий интересующего нас фрагмента ДНК. Соответственно, полученная нам колония – это завод по производству ДНК.
Все три операции – вырезание, вставка и копирование – были выполнены в 1972 году в Гонолулу. Это произошло на конференции, посвященной исследованию плазмид. На этой конференции присутствовали Герб Бойер, молодой ученый, недавно получивший пост штатного профессора в Калифорнийском университете в Сан-Франциско, и, что ожидаемо, Стенли Коэн, один из первых исследователей плазмид. Оба они были выходцами с востока США. Бойер происходил из Западной Пенсильвании и в старших классах играл в футбол – был нападающим. Пожалуй, ему очень повезло, что тренер по футболу одновременно был учителем естествознания. Как и Коэн, Бойер являлся представителем нового поколения ученых, воспитанных на идее двойной спирали. Он так увлекался изучением ДНК, что даже назвал своих сиамских котов Уотсон и Крик. Поэтому никто, включая тренера, не удивился, когда по окончании колледжа Бойер решил заняться генетикой бактерий.
Хотя и Коэн, и Бойер в те времена работали на берегах бухты Сан-Франциско, до гавайской конференции они не встречались. Бойер был экспертом по рестриктазам уже тогда, когда о них практически никто еще не слышал; именно он и его коллеги определили последовательность оснований на участке, вырезаемом рестриктазой EcoRI. Вскоре Бойер и Коэн осознали, что в альянсе друг с другом смогут вывести молекулярную биологию на совершенно новый уровень – в мир копирования, вырезанияи вставок. Как-то поздним вечером они зашли в ресторанчик в районе Вайкики и принялись фантазировать о зарождении технологии рекомбинантной ДНК, кратко конспектируя свои идеи прямо на салфетках. Такую форму предвидения будущего окрестили «от солонины к клонированию».
Через несколько месяцев наладилось сотрудничество между лабораториями Бойера (в Сан-Франциско) и Коэна (в 64 километрах к югу от Пало-Альто). Герб Бойер продолжал работать над исследованием рестриктаз, а Стенли Коэн ставил опыты с плазмидами. На их удачу, у Коэна была лаборантка Энни Чанг, которая жила в Сан-Франциско и успешно осуществляла обмен драгоценной информацией о результатах исследований, проходящих в этих лабораториях. На первом этапе ученые решили создать гибрид – рекомбинант, состоящий из двух разных плазмид, каждая из которых была устойчива к конкретному антибиотику. В одной плазмиде имелся ген (участок ДНК), обеспечивавший устойчивость к тетрациклину, а в другой – ген устойчивости к канамицину. (Как вы уже догадываетесь, исходно бактерии с первой плазмидой погибали от канамицина, а бактерии с второй плазмидой – от тетрациклина.) Предполагалось сконструировать единую «суперплазмиду», которая бы обеспечивала устойчивость к обоим антибиотикам.