Электрохимические технологии и материалы
Шрифт:
Активный слой может состоять из металлов платиновой группы и оксида одного металла или смешанных оксидов с достаточной электронной проводимостью (PbO2, MnO2, RuO2 и др.). Срок службы составных электродов определяется природой, коррозионной стойкостью активного покрытия и его пористостью. Толщина активного слоя составных электродов и способы нанесения зависят от типа покрытия, коррозионной стойкости и области применения анода. Толщина платинового или слоя оксида рутения может меняться от
Металлические покрытия наносят, как правило, гальваническим способом, применяют также приварку тонкой фольги и разные виды напыления. Оксидные слои наносят электрохимическим (PbO2), термохимическим (RuO2, MnO2) способами или нанесением металлического покрытия с последующим окислением.
Большое распространение в последнее время находят окисно-рутениевотитановые аноды (ОРТА). Металлическая титановая основа делает их удобными для изготовления электродов промышленных электролизеров. Созданы компактные и проницаемые для газа электроды, которые обеспечивают отвод выделяющихся на аноде газов на обратную сторону электрода. Срок службы таких электродов выше графитовых. Они имеют постоянные размеры и электрохимические характеристики, что позволяет сохранять необходимое напряжение и выход целевого продукта. Вместо титана в качестве подложки используют и биметаллические композиции.
Преимуществом ОРТА является высокая селективность и больший выход по току многих продуктов по сравнению с другими анодами.
К недостаткам электрода относят сравнительно высокую стоимость. Окисно-рутениевотитановые аноды не являются универсальными электродами. При неправильной эксплуатации они могут разрушаться. Эти электроды не рекомендуется использовать в условиях, когда возможна временная или периодическая катодная поляризация анода. При катодной поляризации нарушается пассивация ОРТА и они выходят из строя.
Механизм выделения кислорода на аноде существенно зависит от состава электролита, pH и материала анода [4]. Восстановление кислорода связано с природой частиц, адсорбирующихся на аноде, что ведет к изменению его состояния и потенциала выделения О2. Например, потенциал разряда кислорода в сильнощелочных средах на Pt– , MnO2– и PbO2– анодах меньше, чем в кислых. Меняется и перенапряжение выделения кислорода в зависимости от материала анода. При равных условиях, потенциал выделения кислорода в кислых средах на анодах из PbO2 выше, чем на платине, а в щелочных средах – наоборот. Из-за разного механизма выделения кислорода в сильнощелочных средах на графитном аноде практически не реализуется окисление графита, в то время как в кислых средах при разряде молекул воды с образованием атомарного кислорода наблюдается интенсивное окисление с образованием СО2.
Технологические и технико-экономические показатели работы электролизеров существенно зависят от конструкции электродов. Она должна
В целях снижения потерь напряжения необходимо учитывать и отвод газов из зоны прохождения тока по электролиту. Конструкция электродов должна способствовать как внутренней циркуляции электролита в электролизере, так и внешней, необходимой для поддержания теплового режима. Желательно, чтобы электроды были просты в изготовлении, удобными при транспортировке, монтаже и хранении. В большинстве случаев конструкция электродов и материал, из которого они изготавливаются, определяется спецификой электрохимического процесса.
Электроды бывают гладкие, жидкие, кусковые и пористые [2].
По типу включения различают монополярные и биполярные электроды. У монополярных электродов вся поверхность поляризуется одним знаком, требования к материалу и поверхности электрода одинаковы для всех его частей. В биполярных системах одна часть электрода работает как катод, другая как анод. Требования к материалу и активно работающей поверхности частей электрода разные. Обе части этого электрода должны быть надежно электрически соединены с возможно меньшим сопротивлением.
Геометрические формы электродов очень разнообразны и зависят от ряда факторов. Встречаются плоские, перфорированные, пластинчатые, сетчатые и жалюзийные электроды. В ряде случаев электроды используют для регулирования теплового режима и их выполняют как теплообменники. В таких электродах предусмотрена система каналов для протока регулирующих температуру агентов.
Получили распространение электроды, проницаемые для газов и жидкости, что используется для отвода газовых и жидких продуктов электролиза.
Между разноименными электродами часто помещают сепараторы (разделители) из диэлектрических материалов. Они могут использоваться для предотвращения случайного соприкосновения электродов, а также разделения анолита и католита. Сепараторы не должны сильно увеличивать омические потери, должны быть устойчивы к применяемым электролитам, термическим условиям и механической нагрузке [2–4].
Применяют сепараторы из вулканизированного каучука, пластмассы и стекловолокна. Широкое распространение в настоящее время получили ионно-обменные мембраны, которые играют роль сепараторов. Они используются в системах очистки воды, получения чистых растворов, обессоливания и др. [1].
Проблема разработки новых материалов, используемых в качестве катодов или анодов, находится в центре внимания исследователей. Работы по созданию и проверке новых коррозионностойких катодных и анодных материалов ведутся постоянно.
Глава 2. Химические источники тока
2.1. Классификация и основные характеристики ХИТ
Химическими источниками тока (ХИТ) называют электрохимические системы, превращающие химическую энергию в электрическую [2–8].