Электронные системы охраны
Шрифт:
Скорость
Вернемся еще к одному свойству электромагнитной энергии. Независимо от характера источника скорость ее распространения равна скорости света - 300 тысяч километров в секунду. Такую величину даже в наше время трудно себе представить, в особенности если подумать, сколько усилий нужно, чтобы самолет преодолел скорость звука - 332 метра в секунду. Вот если бы воздуха не было...
Влияние воздуха
Самое смешное, что для МКВ-излучения воздуха как бы не существует. Микроволновые колебания распространяются в атмосфере все с той же скоростью света. Следовательно, те проблемы, которые представляли для дифракционных ультразвуковых систем сквозняки
Оптические свойства
Если вы представляете себе физические свойства света, то свойства МКВ-излучения для вас почти уже ясны.
Сверхвысокочастотные волны движутся по прямой - значит, между передатчиком и приемником должна быть открытая прямая линия; микроволны можно отражать, преломлять и фокусировать.
Проникающая способность
Понятие проникающей способности впервые появилось в нашем с вами словаре при обсуждении различных видов электромагнитной энергии. Но с ней стоит разобраться поглубже, чтобы квалифицированно противопоставлять, сравнивать и применять МКВ и ультразвуковые приборы в конкретных практических ситуациях. Ключевым моментом является то, что МКВизлучение проникает через все, кроме металла. То, насколько это влияет на систему сигнализации, зависит от плотности и толщины слоя неметалла. Например, кирпичная стена поглощает большую часть энергии МКВ-излучения, и происходящее за этой преградой не вызывает срабатывания системы - особенно если принять во внимание оптические свойства луча, и пучок отводится от стены. Однако для МКВ-излучения "не существует" деревянных дверей, стекол, панелей из ДСП. Именно поэтому использование МКВ-датчика вблизи окна может стать источником большого числа ложных тревог.
Ультразвук может проникать через тонкие листы бумаги и пластика, но не более того.
Для запоминания и применения в последующей работе сведений о проникающей способности микроволнового излучения подойдет следующая мнемоническая формула: микроволны пронизывают неметаллические материалы благодаря своей высокой скорости, но металлическая "броня" им не по зубам. Ультразвук же, подобно кавалеристу, идет своей медленной леткой походкой и не может пробить никаких стен.
Принцип работы
Что бы вы сказали о том, что летучая мышь знает едва ли не больше всех нас о пространственном распознавании и определении в воздухе координат людей и препятствий. Лично для меня в работе по созданию радаров этот крылатый зверек всегда был источником вдохновения. То, что летучая мышь использует ультразвук интересно, но не принципиально. С тем же успехом она могла бы пользоваться и микроволновым излучением.
Летучая мышь настолько совершенно ориентируется в пространстве, что пытавшимся добиться таких же результатов инженерам-конструкторам приходилось довольствоваться их простейшими подобиями, дальнейшее совершенствование которых затруднялось их дороговизной и лавинообразным ростом технологических сложностей.
Кое-что еще о допплеровском эффекте
Если дело того стоит, то летучая мышь может пролететь в полной темноте через дыру не шире размаха ее крыльев. Чтобы выполнить такой трюк, она должна своей сложной радарной измерительной системой определить точный угол сдвига своего тела в стороны, скорость, расстояние до отверстия и его ширину. Для определения скорости летучая мышь использует допплеровский эффект, а для измерения дистанции и
К счастью, для систем сигнализации не важна скорость или направление движения нарушителя. Достаточно знать, что он в помещении и движется к охраняемому объекту. Следовательно, из арсенала летучей мыши можно позаимствовать лишь допплеровский эффект.
Стоит также обратить внимание на то, что в случае летучей мыши отверстие стоит на месте, а движется источник ультразвука. В системах сигнализации все наоборот. Допплеровский эффект одинаково работает в обоих случаях, так как он фиксирует относительное движение.
Радарное обнаружение
В главах 4 и 15 уже говорилось, что в радарах приемник и передатчик расположены рядом, и сигнал в требуемом направлении излучается постоянно. Все, что попадается на пути луча, отражает часть его энергии на приемник в виде эха. Если объект стоит на месте, частота волны эха не изменится. МКВ-датчик будет игнорировать такой отраженный сигнал даже при сильных перемещениях воздуха в отличие от ультразвукового детектора.
Если объект движется, и это, к примеру, нарушитель, проникший в комнату, частота сигнала-эха будет отличаться от частоты исходного импульса. На основе этой информации приемник включит систему сигнализации.
Дифракционный метод обнаружения
Поскольку перемещения воздуха для микроволнового излучения не помеха, то вполне разумно использовать дифракционный метод в МКВ-системах сигнализации. То, что таких систем мало, связано, видимо, с существовавшей в ранних моделях МКВ-детекторов проблемы "мертвых зон", уже описанной в главе 15. Если же добавить еще один-два приемника и придать таким образом разносторонность системе приема, то в наших руках будет весьма эффективное средство защиты складских помещений.
В главе 19 мы вновь возвратимся к проблеме "мертвых зон" или, иначе говоря, ситуаций, когда поднимается ложная тревога из-за потери сигнала на приемнике. Такие ситуации вполне могут возникнуть в микроволновых заграждениях по периметру вне помещения.
Уловки обнаружения
Для МКВ нарушитель - не что иное, как сосуд с водой: вода прекрасно отражает микроволновое излучение, особенно если она не совсем чистая. Следовательно, несмотря на глубокое проникновение излучения в тело микроволновый радар не смотрит "сквозь" нарушителя, а реагирует на него.
Надежность и контроль за ложными тревогами
Многое из того, что было сказано в главе 15 о способах избежания ложных тревог, относится и к микроволновым радарам. Что особенно важно электронные системы обработки сигналов в обоих случаях практически совпадают.
Проблема в том, что типичный допплеровский сдвиг частот в популярном у конструкторов диапазоне волн длиной около 3 см совпадает с пульсацией тока в системе питания - 5060 или 100-120 герц. Избежать этой трудности можно, снабдив детектор качественным стабилизатором тока. Но такое устройство и обеспечение его долговременной надежной работы - тоже конструкторская задача высокой сложности. Кроме того, диод Ганна, используемый для генерации МКВ, к сожалению, не очень эффективен. Разрушение термического контакта между диодом и металлической оболочкой резонатора может привести к перегреву и последующему отказу покрытия. Преодолеть малую эффективность системы можно, используя недавно открытые источники микроволновой энергии, такие, как полевые транзисторы на базе арсенида галлия (тиристоры).