Энергия, секс, самоубийство
Шрифт:
Принимая все это во внимание, можно сказать, что два пола нужны для обеспечения точного соответствия работы митохондриальных и ядерных генов. Если соответствие не точное, дыхание нарушается, и возникает высокий риск апоптоза и нарушений развития. Точность соответствия постоянно находится под угрозой из-за двух факторов: высокой частоты мутаций митохондриальной ДНК и «перемешивания» новых ядерных генов в каждом поколении за счет полового процесса. Чтобы обеспечить как можно более точное соответствие в каждом поколении, нужно протестировать на совместимость один набор митохондриальных генов и один набор ядерных генов. Поэтому митохондрии должны наследоваться только от одного родителя. Если они происходят от двух родителей, два набора митохондриальных генов окажутся в паре с одним набором ядерных. Это все равно что при подготовке танцевального номера с тремя участниками поставить с одним партнером двух женщин совершенно разного сложения.
Эта гипотеза двойного контроля имеет два важных следствия. Во-первых, она позволяет примирить существующие модели, объясняя противоречия между ортодоксальной доктриной и фактами, обнаруженными в исследованиях эволюции человека. Чтобы добиться согласованной работы митохондриального генома и ядерного генома, нужно (в общем), чтобы митохондриальный геном наследовался от одного родителя, поэтому материнское наследование является нормой. Если митохондрии наследуются от обоих родителей, эффективность дыхания, скорее всего, будет нарушена, так как двум популяциям митохондрий придется танцевать с одним и тем же ядерным партнером. Ситуация обострится, если разные митохондриальные геномы будут конкурировать согласно теории эгоистичного конфликта. Обратите внимание, однако, что некоторая степень гетероплазмии и рекомбинации возможна, так как иногда она может обеспечить наилучшее соответствие геномов. Все это позволяет объяснить неожиданные открытия последних лет — гетероплазмию, рекомбинацию митохондриальной ДНК, действие отбора на митохондрии. «Чистота» митохондриальной популяции — это важно, но самый важный аспект — это все-таки эффективность работы митохондриальных генов во взаимодействии с ядерным геномом.
Во-вторых, гипотеза двойного контроля подводит положительную базу под естественный отбор. Одна из трудностей теории эгоистичного конфликта заключается в том, что, согласно ей, отбор может только выбраковывать отрицательные последствия конфликта геномов. Однако, как мы видели, гетероплазмия зачастую не приводит к жесткой конкуренции двух геномов. Если гетероплазмия — не такая уж вредная вещь, то почему естественный отбор, как правило, все же поддерживает материнское наследование? Напрашивается ответ: потому, что оно, как правило, полезно. Теория двойного контроля предлагает нам веское обоснование этой пользы: наиболее приспособленными обычно оказываются те особи, которые наследуют митохондриальную ДНК только от матери, так как это обеспечивает наилучшее соответствие ядерного и митохондриального генома. Вот и объяснение существования двух полов.
Где и в какой момент отбор обеспечивает гармонию между ядерными и митохондриальными генами? Скорее всего, во время развития женского эмбриона, когда подавляющее большинство яйцеклеток (ооцитов) погибают путем апоптоза. Вероятно, существует своего рода «бутылочное горлышко», через которое проходят только наиболее приспособленные клетки. Оно способствует отбору клеток с отлично работающими митохондриями.
О том, как именно это работает, известно очень мало, и некоторые даже сомневаются, что такой отбор вообще существует. Тем не менее имеющиеся данные в общих чертах соответствуют предсказаниям гипотезы двойного контроля. Такое впечатление, что выживание ооцитов зависит от того, насколько успешно их митохондрии работают на фоне работы ядерного генома.
Как просочиться через бутылочное горлышко
Оплодотворенная яйцеклетка (зигота) содержит около 100 тысяч митохондрий, подавляющее большинство которых (99,99 %) наследуются от матери. В первые две недели эмбрионального развития зигота совершает несколько делений и превращается в эмбрион. При каждом делении митохондрии распределяются по дочерним клеткам, но сами активно не делятся. Поэтому первые две недели беременности развивающемуся эмбриону приходится обходиться теми 100 тысячами митохондрий, которые он унаследовал от зиготы. К тому времени, как митохондрии, наконец, начинают делиться, каждая отдельная клетка эмбриона содержит не больше пары сотен митохондрий. Если они не справляются с обеспечением клеток энергией для развития, эмбрион погибает. Доля ранних выкидышей, связанных с энергетическими проблемами, неизвестна, но показано, что нехватка энергии является причиной неправильного расхождения хромосом во время деления клеток. Это приводит к аномалиям числа хромосом, например к трисомии (когда клетка содержит не две, а три копии одной хромосомы). Практически все эти аномалии несовместимы с нормальным развитием. Живой младенец может родиться только в случае трисомии 21 (три копии 21-й хромосомы), но будет иметь синдром Дауна.
У женского эмбриона первые узнаваемые яйцеклетки (зачаточные ооциты) появляются после второй-третьей недели развития. Сколько митохондрий они содержат, не вполне понятно; по одним оценкам, меньше десяти, по другим — больше двухсот. Цифры, которые приводит в своем обзоре авторитетный австралийский специалист по репродуктивному здоровью Роберт Джансен, ближе к нижней границе разброса. Как бы то ни было, это начало «бутылочного горлышка», через которое происходит отбор на лучшие митохондрии.
Как митохондрии проходят через бутылочное горлышко? Митохондрий в каждой клетке немного, а значит, все они с высокой долей вероятности имеют гены с одинаковыми последовательностями. Кроме того, каждая митохондрия имеет только одну копию хромосомы, а не пять или шесть, как обычно. Это значит, что дефектная митохондрия никак не может скрыть свою несостоятельность. Ее тут же выведут на чистую воду: недостатки будут замечены, клетка погибнет. Как только бутылочное горлышко осталось позади, следующий шаг — это увеличение числа митохондрий. После того как установлено соответствие между единственным клоном митохондрий и ядерными генами, необходимо протестировать, насколько хорошо они работают вместе. Для этого клетки и их митохондрии должны делиться, а это зависит и от митохондриальных, и от ядерных генов. В электронный микроскоп поведение митохондрий выглядит поразительно — они окружают ядро, как бусы. Кажется, что такая удивительная конфигурация должна означать, что между митохондриями и ядром происходит какой-то диалог, но мы пока не знаем, о чем они беседуют.
Размножение ооцитов в эмбрионе на протяжении первой половины беременности приводит к тому, что их число возрастает от 100 после трех недель развития до 7 миллионов после пяти месяцев (примерно в 218 раз). Число митохондрий в одной клетке возрастает до примерно 10 тысяч, то есть всего во всех клетках зародышевой линии их 35 миллиардов (увеличение в 229). Число копий митохондриального генома резко увеличивается. Затем происходит какой-то отбор. Как именно он работает, неизвестно, но на момент рождения число ооцитов падает с 7 миллионов до примерно 2 миллионов, то есть без толку пропадают 5 миллионов (почти три четверти) ооцитов. Темпы потери ооцитов снижаются после рождения, но к началу менструаций их остается только около 300 тысяч, а к сорока годам, когда фертильность ооцитов резко падает, остается только 25 тысяч. После этого их число экспоненциально снижается до менопаузы. За время репродуктивной жизни женщины из миллионов ооцитов эмбриона овулируют только около 200. Трудно не предположить, что имеет место какая-то конкуренция и что только самые лучшие клетки становятся зрелыми ооцитами.
Действительно, есть указания на то, что тут не обходится без очищающего отбора. Я уже упоминал, что половина незрелых ооцитов в яичниках здоровой женщины содержит ошибки в митохондриальных последовательностях. Только малая часть этих незрелых яйцеклеток достигает зрелости, и только несколько из них успешно оплодотворяются, образуя эмбрион. Как происходит отбор на лучшие яйцеклетки, неизвестно, но известно, что процент митохондриальных ошибок у ранних эмбрионов снижается примерно до 25 %. Половина митохондриальных ошибок была отбракована, а значит, наверное, произошел какой-то отбор. Кроме того, многие эмбрионы тоже погибают (большинство — в первые недели беременности). Причины опять-таки неизвестны. Тем не менее известно, что встречаемость митохондриальных мутаций у новорожденных младенцев составляет лишь малую часть их встречаемости у ранних эмбрионов, и это наводит на мысль о том, что часть митохондриальных ошибок была отбракована. Есть и другие косвенные свидетельства митохондриального отбора. Не исключено, например, что отбор ооцитов действует «по доверенности» естественного отбора вообще, позволяя избежать дорогостоящих вложений в создание взрослой особи. Тогда можно ожидать, что виды, которые вкладывают значительные ресурсы в маленькое число потомков, будут иметь самые лучшие «фильтры» качества ооцитов, потому что таким видам есть что терять, если ооциты окажутся плохими. Такое впечатление, что это действительно так. Виды с минимальным числом детенышей в помете имеют самое узкое «бутылочное горлышко» (наименьшее число митохондрий в незрелом ооците) и самое значительное выбраковывание ооцитов во время развития.
Хотя мы не знаем, как именно действует такой отбор, ясно, что ооциты, не прошедшие строгий контроль, погибают путем апоптоза, и митохондрии явно вовлечены в этот процесс. Спасти приговоренный к смерти ооцит можно, просто впрыснув в него несколько дополнительных митохондрий. Это и лежит в основе метода переноса ооплазмы, который мы упоминали на с. 272. Раз уж такой грубый маневр может защитить от апоптоза, то, скорее всего, судьба ооцита действительно зависит от его обеспеченности энергией. И правда, существует общая корреляция между уровнями АТФ и потенциальной возможностью нормально развиваться. Если уровни энергии слишком низкие, из митохондрий выходит цитохром с, и ооцит совершает апоптоз.