Чтение онлайн

на главную

Жанры

Если бы числа могли говорить. Гаусс. Теория чисел
Шрифт:

Математик даже пытался убедить Гёттингенский университет сделать Софи почетным доктором, но она умерла до того, как ученый достиг своей цели.

Больше всего об уважении к Гауссу со стороны его современников говорит тот факт, что правительство Вестфалии, находясь в руках французских захватчиков, пыталось выполнить свое обещание и построить для исследователя новую обсерваторию. Для этой цели были выделены огромные средства, и к 1814 году, когда королевство Вестфалия перестало существовать, работы находились в самом разгаре — и это несмотря на огромные экономические трудности, связанные с разгромом Пруссии. Гаусс всегда мог получать материал, необходимый ему для исследований. Работая в университете, ученый добился назначения стипендий наиболее талантливым студентам, среди которых были Христиан Людвиг Герлинг (1788-1864) и Август Мёбиус (1790-1868). Первый стал известным физиком, а второй — признанным астрономом и математиком,

создателем знаменитой ленты Мёбиуса.

Однако коллеги Гаусса отмечали, что он был не слишком привержен преподавательской деятельности и направлял гораздо большие усилия на исследования. Но такое обобщение неверно. Следует учитывать, что в этот университет многие студенты поступали скорее благодаря родственным связям, чем интеллектуальным заслугам. Большинство из них сами были не слишком заинтересованы в учебе: им не хватало как мотивации, так и элементарных знаний. Гаусс в письме, адресованном в 1810 году своему близкому другу астроному и математику Фридриху Вильгельму Бесселю (1784-1846), утверждал:

МАРИ СОФИ ЖЕРМЕН

Софи Жермен (1776-1831) — женщина-математик из Франции, внесшая значительный вклад в теорию чисел, в частности в изучение чисел, которые позже были названы простыми числами Жермен (простые числа, которые при увеличении вдвое и добавлении единицы также дают простое число), например 11 и 23. Жермен очень интересовалась учебой у Жозефа-Луи Лагранжа и под псевдонимом «месье Ле Блан» (это имя принадлежало одному из бывших студентов Лагранжа) посылала ему некоторые статьи.

Французский математик был под таким впечатлением от этих статей, что попросил у Ле Блана встречи, и Жермен пришлось открыть ему свою личность.

Лагранж смог победить свои предрассудки и признал математический талант Софи, решив стать ее наставником. Ту же стратегию Жермен использовала для переписки с Гауссом. Одно из наибольших ее достижений в теории чисел — математическое доказательство предложений, которые позволяли значительно сузить поле поиска доказательства знаменитой гипотезы Ферма. Некоторые из этих результатов были впервые представлены в письмах Гауссу.

«Этой зимой я читаю два курса лекций трем студентам, из которых один регулярно готов, другой — гораздо менее регулярно, а третьему не хватает подготовки и способностей. Таковы обязанности на кафедре математики».

Едва Гаусс нашел студентов, способных с пользой провести годы обучения, он очень ими заинтересовался. Его корреспонденция полна писем с советами, в которых он дает им подробные объяснения. Что касается неспособных или немотивированных студентов — что правда, то правда: Гаусс действительно проявлял в общении с ними мало терпения. Ученый всегда надеялся, что его ученики смогут работать и думать самостоятельно, так что гораздо важнее не объяснения преподавателей, а их собственные усилия. Однако подобное отношение вступало в конфликт с педагогическими идеями XIX века, и только по этой причине Гаусса часто описывают как плохого преподавателя, обеспокоенного только собственными исследованиями. Но тот факт, что Гаусс был наставником Бернхарда Римана (1826-1866) — возможно, самого известного математика второй половины XIX века, должен снять с него любые обвинения в нерадивом отношении к преподавательским обязанностям.

ГЛАВА 3

Метод нахождения планет

Едва достигнув 25 лет, Гаусс уже внес значительный вклад в математику. Однако слава об ученом распространилась по всему континенту благодаря его астрономическим работам, связанным с вычислением орбиты Цереры. Для этого Гаусс воспользовался методом наименьших квадратов — одним из своих важнейших математических открытий.

С юных лет Гаусс пользовался известностью и уважением среди коллег и преподавателей и получал материальную поддержку от герцога Брауншвейгского. Однако международная слава пришла к ученому только с первым успехом в области астрономии. Это произошло благодаря вычислению орбиты планеты Цереры, которая сегодня отнесена к карликовым планетам.

Догадка, что между орбитами Марса и Юпитера расположена неизвестная планета, была высказана Иоганном Элертом Боде (1747-1826) в 1772 году. Его рассуждения основывались на законе Тициуса — Боде, предложенном Иоганном Даниэлем Тициусом (1729-1796) в 1766 году. Еще со времен Коперника было очевидно, что расстояние между Марсом и Юпитером ненормально большое. Поэтому, по мере развития знаний об орбитах планет, астрономы пытались найти закон, который объяснял бы расстояния между орбитами и с помощью которого можно было бы открывать новые небесные тела. Первый закон такого типа (строго говоря, его следовало бы называть правилом) был предложен немецким физиком Иоганном Даниэлем Тициусом в то время, когда были известны только планеты Солнечной системы до Сатурна. Согласно этому закону расстояние от каждой планеты до Солнца в астрономических единицах (1 а.е. равна расстоянию от Земли до Солнца) задано следующим правилом:

a = (n+4)/10

где n = 0, 3, 6, 12, 24, 48, то есть каждое значение n, начиная с 3, в два раза больше предыдущего, и а представляет собой наибольшую полуось орбиты. Этот закон затем был использован директором обсерватории Берлина, Иоганном Боде, и стал известен как закон Тициуса — Боде. Если мы вычислим первые восемь чисел ряда, получим такие результаты.

n а (в а. е.)
0 0,4
3 0,7
6 1
12 1,6
24 2,8
48 5,2
96 10
192 19,6

При сравнении этих вычислений с известными расстояниями до открытых к тому времени планет получались следующие результаты.

Планета n Расстояние по закону Т-Б Реальное расстояние
Меркурий 0 0,4 0,39
Венера 3 0,7 0,72
Земля 6 1 1
Марс 12 1,6 1,52
  24 2,8  
Юпитер 48 5,2 5,2
Сатурн 96 10 9,54
  192 19,6  

Как можно заметить, приближение довольно хорошее, хотя его можно было посчитать простым совпадением, поскольку Тициус никак не обосновал свое правило. Однако открытие Уильямом Гершелем (1738-1822) в 1781 году новой планеты, Урана, подтвердило справедливость закона Тициуса — Боде. Уран был обнаружен на расстоянии 19,18 а.е. от Солнца, в то время как правилом предполагалось 19,6. За открытие планеты Гершель получил пособие 200 фунтов в год и титул кавалера.

После открытия Урана астрономы начали искать новую планету в 2,8 а.е. от Солнца, что соответствовало n = 24. На астрономическом конгрессе в городе Гота в 1800 году (сегодня это территория Германии) француз Жозеф Лаланд (1732-1807) рекомендовал начать поиски. В том же году астроном Франц барон Ксавер фон Цах (1754-1832), владелец журнала Monatliche Korrespondenz («Ежемесячная корреспонденция»), самого известного немецкого астрономического издания тех лет, собрал в Лилиентале 24 астронома, чтобы организовать поиск этой гипотетической планеты Солнечной системы. Ученые разделили небо на 24 зоны, и каждый наблюдал за одной из них. Однако судьба была не на стороне группы из Лилиенталя, хотя ей удалось сделать другие значительные астрономические открытия. Удача пришла к Джузеппе Пиацци (1746-1826), который 1 января 1801 года объявил в Палермской обсерватории, что открыл новую планету, которую назвал Церера Фердинанда, в честь Цереры — римской богини плодородия и материнской любви, покровительницы Сицилии, и короля Неаполя и Сицилии Фердинанда IV, поддерживавшего его работу. Название «Фердинанда» затем было снято по политическим мотивам. Пиацци утверждал, что Церера вращается вокруг Солнца по орбите, которая, по-видимому, соответствовала закону Тициуса — Боде для п = 24. Открытие Цереры вызвало всеобщий энтузиазм и было объявлено чудесным предзнаменованием для развития новой науки. Казалось, что это именно та планета, которую ученые с таким интересом искали, и что человечество способно понимать природу и делать научные предсказания.

Поделиться:
Популярные книги

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Путь Шамана. Шаг 6: Все только начинается

Маханенко Василий Михайлович
6. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.14
рейтинг книги
Путь Шамана. Шаг 6: Все только начинается

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный