Если бы числа могли говорить. Гаусс. Теория чисел
Шрифт:
Эйлер разложил каждый член ряда на произведение простых чисел. Например,
1/90 = 1/2 1/З^2 1/5
Риман глубоко изучил функцию, введенную Эйлером, а также расширил сферу применения функции от действительных к комплексным числам.
Когда область определения расширяется до комплексных чисел, с функцией становится намного сложнее работать. Для начала, ее невозможно представить графически.
Зенон Элейский (ок. 490 — ок. 430 до н.э.) — древнегреческий философ, который создал ряд парадоксов, или апорий, чтобы поддержать учение своего учителя Парменида, утверждавшего, что ощущения, которые мы получаем о мире, иллюзорны. В частности, с помощью логических рассуждений Зенон пытался доказать, что физического движения не существует. Действующими
D+D/2+D/4+D/8+...
Так что в худшем случае получается, что Ахиллес должен пробежать
но по результату Эйлера мы знаем, что сумма ряда конечна и на самом деле она равна ^2/6, поэтому расстояние, которое должен пробежать Ахиллес, также конечно. Более того, расстояние, которое он пробегает до того, как догнать черепаху, — обозначим его через d — равно
d<=(1/2+^2/6) · D
Если мы выполним вычисления, получится, что d < 2,144 · D. Действительно, можно вычислить, что расстояние, которое пробегает Ахиллес, чтобы догнать черепаху, при его двойной скорости равно d = 2D.
Дзета-функция, которой пользовался Эйлер, — это действительная функция с действительным значением, то есть для действительного значения мы получаем результат, который также является действительным значением. Например, мы знаем, что
Благодаря этому можно изобразить функцию в виде графика на плоскости, которую математики обозначают R^2. Когда мы меняем область определения функции, то есть множество, в котором она принимает значения, на множество комплексных чисел, результат функции также становится комплексным числом. Если мы сочтем, как это сделал Эйлер, что комплексное число a + bi может быть представлено как пара (a, b) е R^2, и то же самое справедливо для ( + bi), которое также является комплексным числом, то получается, что его графическое представление должно осуществляться в R4, то есть в пространстве из четырех измерений. Построение графиков в пространствах из четырех измерений нам недоступно, однако Риман смог вообразить эту функцию в четырех измерениях и понял, что существует связь между простыми числами и нетривиальными нулями функции, то есть теми, действительная часть которых лежит строго между 0 и 1.
Отмечая наступление нового тысячелетия, Институт Клэя выбрал семь математических задач, которые устояли перед всеми попытками их решения. Это было сделано в подражание Давиду Гильберту, который за 100 лет до этого определил перечень из 23 задач,
1. Р относительно . Сформулирована Стивеном Куком в 1971 году. Возможно, это центральная проблема наук о вычислении. В основном математические проблемы сегодня классифицируются по классам Р и . Класс Р содержит все проблемы, которые могут быть решены с помощью алгоритма за полиномиальное время. Это означает, что число итераций ограничено многочленом, в котором переменная — «размер» проблемы. Эти проблемы решаемы с помощью компьютеров. Класс сформирован теми проблемами, для которых не существует алгоритмов в полиномиальном времени, но если у нас есть возможное решение проблемы из этого класса, то мы можем определить, хорошее оно или нет, за полиномиальное время. Из предыдущего определения следует, что любая проблема Р также является проблемой , т есть любая проблема, решаемая в полиномиальном времени с помощью правильно подобранного алгоритма (Р), — это также проблема, которая допускает быструю проверку возможного решения . Задача заключается в том, чтобы доказать (или опровергнуть), что любая проблема также является проблемой Р.
2. Гипотеза Ходжа. Связана с исследованием форм сложных объектов с помощью приближения на основе сочетания самых простых геометрических блоков возрастающей размерности.
3. Гипотеза Пуанкаре. Предложена в 1904 году знаменитым французским математиком Жюлем Анри Пуанкаре (1854-1912). В ее самом простом выражении говорится, что есть только одна компактная односвязная разновидность размерности 3 — трехмерная сфера. Это единственная решенная проблема в списке — корректное доказательство в 2003 году представил российский ученый Григорий Перельман (р. 1966). За это открытие ему было решено вручить Филдсовскую премию, однако ученый от награды отказался.
4. Гипотеза Римана. В ней утверждается, что действительная часть нетривиальных нулей дзета-функции Римана равна 1/2.
5. Задача Янга — Миллса. Поставлена как математическая задача и относится к изучению уравнений Янга — Миллса, крайне важных для объединения квантовой электродинамики с теорией электрослабого взаимодействия.
6. Задача Навье — Стокса. Изучение существования решения для основных уравнений движения вязких жидкостей.
7. Гипотеза Бёрча — Свиннертон-Дайера. Состоит в изучении того, бесконечным или конечным является множество рациональных решений для эллиптической кривой.
При этом он начал с вычисления нетривиальных нулей функции и на основе этих вычислений и глубокого понимания сути дзета-функции предположил, что действительная часть любого нетривиального нуля функции равна 1/2. Это утверждение известно как гипотеза Римана.
Риман сразу же понял, что его гипотеза может объяснить причину, по которой результат Гаусса с функцией Li(N) оказался таким точным. Позже было доказано, что гипотеза Римана эквивалентна первой гипотезе о простых числах Гаусса.
Перфекционизм, которым страдал Риман в период своего обучения, чуть не помешал ему записать свои открытия. Без сомнения, так сказывалось влияние Гаусса, который настаивал на том, что публиковать следует только идеальные доказательства, абсолютно лишенные пробелов. В ноябре 1859 года Риман опубликовал в ежемесячных заметках Берлинской академии эссе о своих открытиях. Этим десяти страницам плотных математических рассуждений было суждено быть единственными, которые Риман опубликовал по вопросу простых чисел, и несмотря на это они оказали значительное влияние на восприятие данных чисел в будущем. И все же, несмотря на блестящую интуицию Римана, эссе не было оценено. Вслед за своим учителем, Гауссом, Риман уничтожил все «леса». Главный тезис эссе состоял в том, что функция L.(N) Гаусса будет предоставлять каждый раз все лучшее приближение к функции по мере нашего продвижения в расчетах. Хотя Риман предложил инструмент доказательства гипотезы Гаусса, решение осталось вне досягаемости. Впрочем, Риман ввел форму, с помощью которой в будущем оказалось возможным подступиться к проблеме. Доказательство гипотезы Римана сразу же захватило математиков.