Естествознание. Базовый уровень. 10 класс
Шрифт:
Если мы имеем дело с непрозрачным предметом, то он не пропускает никакого света, а может только отражать и поглощать. Белый предмет отражает весь видимый спектр, потому он и выглядит как белый. Чёрный же не отражает никакого света – все падающие на него лучи он поглощает. Поэтому от него в наш глаз не попадает никакого излучения, что воспринимается как чернота. Именно по этой причине люди в жару стараются носить белую или светлую одежду, в наибольшей степени отражающую солнечные лучи, тогда как одежда чёрного цвета большинство лучей поглощает и от этого нагревается. Всё же цветные предметы поглощают свет избирательно, в определённых областях видимого спектра, а все остальные падающие на них волны, отражают. Этот отражённый свет и попадает нам в глаза, вызывая ощущение определённого цвета. Соответственно, сочетание всех волн,
Но для того чтобы что-то могло поглотить или отразить свет, этот свет должен откуда-то прийти. Другими словами, всякий свет должен иметь источник. Таким источником может быть Солнце, Луна, звёзды, электрическая лампа, свеча и многое другое.
Рис. 110. Непрерывный (А) и линейчатый (Б) спектры
Свет, испускаемый этим источником, иногда может быть белым, как свет Солнца, а иногда в нём будут преобладать волны с какой-то определённой длиной. Так, свет лампочки накаливания является почти белым, но с некоторым преимуществом жёлтой части спектра, а цвет огня в печи или костре имеет хорошо выраженную красную составляющую. В то время, когда не было цветных телевизоров, изображение на экранах называлось чёрно-белым, однако «белый» фон был не совсем таким, в нём явно просматривался голубой оттенок. Отсюда и названия передач старого телевидения, например «Голубой огонёк». Совокупность волн всех частот, испускаемых данным источником света, называют его спектром испускания.
Для изучения спектров, испускаемых различными источниками, применяют приборы, называемые спектрометрами. Если направить спектрометр на Солнце или электрическую лампу накаливания, можно увидеть полосу, в которой представлены все цвета спектра, плавно переходящие друг в друга. Такой спектр называют сплошным или непрерывным (рис. 110, А). Другой вид имеют спектры, испускаемые светящимися газами. Они состоят из чётко разграниченных линий. Каждая линия чётко отграничена от соседних линий чёрными полосами и представляет собой узкий интервал, в котором содержится излучение, которое соответствует определённой длине волны. Такой спектр принято называть линейчатым или прерывистым (рис. 110, Б). С помощью спектрометра можно исследовать как спектры испускания, так и спектры поглощения.
Первым исследователем, обратившим внимание на спектральные линии, был Йозеф Фраунгофер (1787–1826). В его честь эти линии были названы фраунгоферовыми линиями. В 1850 г. Густав Кирхгоф (1824–1887) и Роберт Бунзен (1811–1899) пришли к выводу, что каждый химический элемент имеет свой уникальный линейчатый спектр и, в частности, по спектру небесных светил можно определить их химический состав. В результате их исследований в науке появился новый метод, называемый спектральным анализом, с помощью которого можно определять состав веществ даже на больших расстояниях. С помощью этого метода инертный газ гелий был открыт на Солнце почти на тридцать лет раньше, чем на Земле, и именно в честь Солнца получил своё название.
1. Как называется разложение спектра на различные цветовые составляющие?
2. Какие виды спектров могут быть характерными для физического тела?
3. От чего зависит воспринимаемый глазом цвет предмета?
4. Для каких целей используют спектральный анализ?
1. Подберите эпиграф к данному параграфу.
2. Зажгите газовую горелку и бросьте в её
Рис. 111. Иллюстрация к заданию 3
3. Выполните практическую работу «Разложение света». Для этого вам понадобится кусок картона, обычный стакан с водой и белая бумага (рис. 111). Прорежьте в картоне длинную узкую щель. На солнечном месте поставьте на белую бумагу стакан, а между ним и солнцем – картон с щелью. Вы увидите, что солнечные лучи, проходя через щель, а затем через воду в стакане, разлагаются на разные цвета. На бумаге появится последовательность цветных полосок.
§ 43 Атомная модель Бора
Спектральный анализ в сочетании с квантовой теорией позволили датскому физику Нильсу Бору (1885–1962) предложить в 1913 г. новую модель атома. Мы уже говорили о том, что главный недостаток модели атома, предложенной Резерфордом, заключался в том, что электрон, двигаясь по орбите вокруг атомного ядра, должен постоянно излучать энергию и, потеряв её, через самое непродолжительное время упасть на ядро. Бор предположил, что электроны в атомах могут находиться в некоторых стабильных состояниях, т. е., согласно термину Резерфорда, на определённых орбитах. Эти орбиты не могут находиться на любом расстоянии от ядра, для них существует набор определённых фиксированных положений, которые называют квантовыми уровнями. Энергия электрона зависит от расстояния его орбиты до атомного ядра. Электроны, находящиеся на таких орбитах, не излучают электромагнитных волн, поскольку, теряя энергию, он должен перейти на более низкую орбиту.
Однако переход электронов с более высокой орбиты на более низкую возможен. Это явление называется квантовым скачком, который, как и всё в квантовой физике, трудно представить наглядно. Электрон мгновенно исчезает с одной орбиты и возникает на другой. Если эта новая орбита имеет более низкий уровень, то электрон теряет энергию, которая испускается атомом в виде кванта излучения, т. е. фотона (рис. 112). Частота этого излучения равна, как мы знаем, энергии кванта, делённой на постоянную Планка. Если разность энергий между орбитами мала, то происходит излучение в красной области спектра, а если велика, то в синей или даже ультрафиолетовой его области.
Рис. 112. Схема испускания и поглощения фотона при переходе электрона на другую орбиту
Соответственно, для того чтобы совершить квантовый скачок на более высокую орбиту, электрон должен поглотить квант энергии. Величина этой энергии определяет орбиту, на которой этот электрон окажется. Электроны, следовательно, могут двигаться в атоме вверх и вниз скачками с одного квантового уровня на другой, не занимая промежуточных положений.