Чтение онлайн

на главную

Жанры

Эволюция. Классические идеи в свете новых открытий
Шрифт:

Исследование показало, что репродуктивная изоляция может зародиться в популяции даже в том случае, если никакой явной выгоды эта изоляция никому не дает. Как мы знаем, важным стимулом для развития изолирующих механизмов является пониженная приспособленность гибридов по сравнению с чистыми родительскими формами. Снижение жизнеспособности у гибридов связано со смешиванием родительских адаптивных признаков. Но у бабочек H. cydno alithea при скрещивании желтых особей с белыми никакого смешивания не происходит, потому что адаптивный признак наследуется моногенно, с полным доминированием. Гибридный потомок получает не промежуточный бело-желтый фенотип, который мог бы оказаться неадаптивным, а один из родительских фенотипов в чистом виде — либо белый, либо желтый. Нет оснований предполагать пониженную жизнеспособность потомства от «смешанных» браков по сравнению с потомством от браков «одноцветных».

Почему желтые самцы стали предпочитать желтых самок? Поскольку это предпочтение не дает никаких преимуществ, мы не можем объяснить его развитие действием отбора. Предпочтение сформировалось либо просто случайно, либо как побочный продукт каких-то внутренних связей в организме или существовавших ранее биологических механизмов.

Что значит «случайно»? Например, некий ген, отвечающий за предпочтение желтых или белых самок, мог случайно оказаться на хромосоме очень близко к локусу К, и поэтому они наследуются сцепленно. Генетические эксперименты подтвердили, что окраска и избирательность действительно наследуются строго сцепленно, однако они не доказали, что эти два признака зависят от разных генов, а не от одного и того же локуса К. К тому же, как бы близко ни располагались друг к другу гены на хромосоме, их сцепленность иногда все-таки должна нарушаться из-за кроссинговера, а это не подтверждается фактами.

Не исключено, что локус К может одновременно влиять и на цвет крыльев, и на избирательность самцов. Это не так уж невероятно, особенно если учесть, что у бабочек одни и те же пигменты могут использоваться и для окрашивания крыльев, и как светофильтры в глазах.

Другая возможность состоит в том, что самец делает выбор «с оглядкой на себя»: он видит, какого цвета крылья у него самого, и выбирает таких же самок. В этом случае самец-мутант с изменившимся цветом крыльев автоматически сразу начнет предпочитать самок с такой же мутацией. Но тогда остается непонятным, почему выбирают себе подобных только желтые самцы, а белые ухаживают за всеми самками без разбора.

Окончательного ответа на вопрос, почему желтые самцы предпочитают желтых самок, пока нет. Однако исследование показало, что отдельные «строительные блоки», из которых в дальнейшем может быть построен изолирующий барьер между видами, могут формироваться в недрах единой популяции даже в том случае, если никакого адаптивного преимущества подобная изоляция пока не дает. Это, конечно, никакое не «заглядывание вперед» и не «движение к заранее намеченной цели» — формированию двух новых видов. Скорее всего, это автоматическая реакция на генетические изменения в популяции, которая выражается в предпочтениях того или иного брачного партнера.

—————

Найден ген, отвечающий за эволюцию окраски у бабочек

Раз уж мы заговорили о бабочках рода Heliconius, специалистах по мюллеровской мимикрии, то нельзя не упомянуть еще об одном важном исследовании, пролившем свет на генетические основы формирования новых признаков.

Окраска крыльев у этих бабочек необычайно разнообразна. Многие виды геликоний делятся на расы, каждая из которых маскируется под тех несъедобных бабочек, которые преобладают в районе ее обитания. Образцами для подражания могут служить и другие виды геликоний, и представители неродственных групп бабочек. Нередко расы, относящиеся к разным видам, но проживающие на одной территории, больше похожи по окраске друг на друга, чем на другие расы своего вида.

Мюллеровская мимикрия — классический пример параллельной (или конвергентной) эволюции, т. е. независимого приобретения сходных признаков представителями разных эволюционных линий. Случаев параллельной эволюции известно великое множество, но генетические основы этого явления пока изучены слабо. Один из интригующих вопросов состоит в том, возникают ли одинаковые признаки у разных видов за счет изменения одних и тех же или разных генов (см. главу 4). Мы уже говорили о том, что параллельное возникновение пятен на крыльях у мух-дрозофил было связано с изменениями регуляторных участков одного и того же гена yellow; правда, сами эти изменения были разными в разных эволюционных линиях (Марков, 2010). Что касается геликоний, то у них генетические основы окраски крыльев до недавних пор были известны лишь в общих чертах. Удалось выявить три участка генома, в которых находятся гены, отвечающие за те или иные аспекты окраски, но сами эти гены оставались неидентифицированными.

Биологи из США и Великобритании сосредоточили свои усилия на участке хромосомы длиной в 650 тыс. пар нуклеотидов, о котором было известно, что он контролирует расположение красных пятен на крыльях у многих видов Heliconius (Reed et al., 2011). Авторы выделяли РНК из зачатков крыльев у куколок семи рас, относящихся к трем видам (H. erato, H. melpomene, H. cydno). По количеству транскриптов (молекул РНК, считанных с того или иного гена) можно определить, насколько активен этот ген в данной части организма на данном этапе развития [83] . Разные части крылового зачатка анализировались по отдельности.

Выяснилось, что из нескольких десятков генов, входящих в состав изучаемого участка хромосомы, с красными пятнами связан только один. Им оказался ген optix, о котором ранее было известно, что он участвует в развитии глаз у дрозофил (если его искусственно активировать в зачатках антенн, на антеннах начинают формироваться глаза). Авторы обнаружили, что у всех семи рас ген optix работает как раз в тех районах крылового зачатка, которые впоследствии приобретают красную окраску (покрываются красными чешуйками). Соответствие между расположением красных пятен и областей экспрессии optix настолько полное, что можно безошибочно реконструировать окраску, а заодно и определить вид и расу бабочки, глядя только на экспрессию гена optix в зачатке крыла у куколки.

Авторы определили полную нуклеотидную последовательность гена optix у нескольких видов и рас геликоний и убедились, что все вариации в кодирующей части гена являются незначимыми (синонимичными). Это значит, что белок, кодируемый геном optix, не изменился за те 15–20 млн лет, которые отделяют современные виды Heliconius от их последнего общего предка. По-видимому, «осмысленные» изменения затронули только регуляторные участки гена, от которых зависит, где и когда будет синтезироваться этот белок в ходе развития организма.

Правда, сами эти регуляторные участки и конкретные мутации, ответственные за изменение окраски, авторы не выявили. Это технически крайне трудная задача, требующая создания трансгенных бабочек. С мухами-дрозофилами такое уже научились проделывать (см. раздел «Загадка узорчатых крыльев» в главе 5), с бабочками — пока нет.

Регулирует ли ген optix окраску крыльев также и у других бабочек, не относящихся к роду Heliconius? Чтобы выяснить это, авторы изучили экспрессию optix в зачатках крыльев у трех неродственных видов бабочек (Agraulus vanillae, Vanessa cardui, Ephesia kuehniella). Никакой корреляции между узором крыла и работой optix у этих видов обнаружить не удалось. Зато оказалось, что там, где в зачатке крыла у них работает ген optix, формируются чешуйки особой формы — с заостренными концами. У этих бабочек ген optix заведует не окраской крыла, а формой чешуек. Возможно, такова была исходная функция optix в крыльях у бабочек. У геликоний этот ген приобрел новую функцию — стал управлять развитием красных пятен.

Изящное подтверждение этой гипотезы авторы обнаружили, изучив крылья у нескольких геликоний-мутантов, у которых пятна на крыльях были не красными, а белыми. Оказалось, что чешуйки, покрывающие эти пятна, у бабочек-мутантов имеют характерную заостренную форму. Вероятно, это своеобразный атавизм: у геликоний-мутантов ген optix сработал так, как он работает у других бабочек, запустив «старую» программу формирования заостренных чешуек вместо «новой» — программы формирования чешуек красного цвета.

Хотя авторам и не удалось выявить конкретные мутации, ответственные за изменения окраски крыльев у геликоний, того, что сделано, вполне достаточно для нескольких важных выводов.

Во-первых, стало ясно, что параллельная эволюция красных пятен у геликоний происходила за счет изменений одного и того же, а не разных генов. Поскольку то же самое ранее было показано для черных пятен на крыльях дрозофил, можно предположить, что это некое общее правило (пределы применимости которого еще предстоит выяснить).

По-видимому, у бабочек, как и у дрозофил, существует некая первичная генетическая «разметка» крыла, в которой участвуют гены — регуляторы высокого уровня, такие как ген wingless. Другие гены-регуляторы, влияющие на окраску крыла (yellow у дрозофил или optix у геликоний), могут в результате мутаций и отбора обзавестись регуляторными участками (энхансерами, или сайтами связывания транскрипционных факторов), благодаря которым их активность в зачатках крыльев оказывается «привязана» к первичной разметке. Небольшие изменения этих регуляторных участков могут приводить к радикальным изменениям окраски.

Общим правилом является также и удивительная многофункциональность генов — регуляторов развития, каждый из которых может управлять несколькими абсолютно разными процессами на разных этапах развития. Это относится и к гену optix, отвечающему за развитие глаз и красных пятнышек (или заостренных чешуек), и к упомянутым генам yellow и wingless, и ко многим другим регуляторам развития.

Эти гены являются, образно говоря, профессиональными переключателями, которым в принципе все равно, что именно переключать. Работа всей системы генетических переключателей определяется не столько кодирующими, сколько регуляторными участками этих генов. Регуляторные участки представляют собой, как правило, очень короткие последовательности нуклеотидов, распознаваемые белками-регуляторами. Случайные мутации с легкостью могут изменить регуляторный участок таким образом, что к нему начнет прикрепляться какой-нибудь другой регулятор. Вероятность удачной мутации в регуляторных частях таких генов существенно выше, чем в кодирующих. В результате таких мутаций фрагменты генно-регуляторных сетей, исходно управлявшие развитием одних частей тела, могут дополнительно взять на себя регуляцию чего-нибудь еще [84] . По мнению многих специалистов, именно изменения регуляторных областей генов — регуляторов развития играют ключевую роль в эволюции многоклеточных (True, Carroll, 2002). Мы поговорим об этом подробнее в заключительной главе.

—————

83

Та же методика оценки активности генов в тканях использовалась и для выделения ключевых генов тонкогубости и толстогубости у цихлид (см. выше).

84

Типичный пример — на задние Hox– гены (HoxA9-13 и HoxD9-13), которые у позвоночных исходно отвечали за продольную «разметку» задней части тела, но у четвероногих взяли на себя дополнительную организующую функцию в развивающихся зачатках конечностей (True, Carroll, 2002). О Hox– генах мы рассказывали в «Рождении сложности» и поговорим еще в заключительной главе.

Эволюция, повернувшая вспять

До какого-то момента процесс видообразования остается обратимым. Изменение условий может привести к тому, что наметившиеся различия сгладятся, а начавшие расходиться популяции снова объединятся. Это может произойти даже с «хорошими» видами, по поводу которых у специалистов нет сомнений, виды это или все-таки разновидности. В наши дни основной причиной таких «обратных эволюционных ходов» является антропогенное воздействие на среду. Например, по словам ихтиолога М. В. Мины из Института биологии развития РАН, под угрозой слияния оказались многие виды цихлид озера Виктория (Мина, 2001). Причина — в неразумном решении вселить в озеро нильского окуня, крупного хищника, который быстро размножился в озере и поставил многие местные виды под угрозу физического уничтожения. Что касается видов, еще не съеденных окунем, то некоторые из них начали скрещиваться друг с другом, «растворяя» свои уникальные особенности в смешанных генофондах. Дело в том, что нильский окунь — рыба крупная. Его нельзя просто высушить на солнышке, как испокон веков поступали местные рыбаки с мелкой рыбешкой (теми самыми цихлидами). Окуня нужно коптить, а для этого нужны дрова. Вырубка деревьев по берегам озера усилила эрозию почв. Дожди стали смывать в озеро больше глины и песка. Озерная вода, и без того мутноватая, замутилась еще больше. В мутной воде многие цихлиды перестали различать нюансы окраски потенциальных партнеров, служившие изолирующим барьером между видами. Началась гибридизация.

Пассивное накопление генетических различий по модели Добжанского — Мёллера у цихлид требует обычно от 4 до 14 млн лет для развития полной несовместимости. Возраст озера Виктория намного меньше, поэтому большинство местных цихлид еще сохранили способность к гибридизации. Таким образом, вселение одного-единственного вида поставило под угрозу «великий эволюционный эксперимент» природы.

Еще один пример обратного хода эволюции исследовали экологи из Швейцарии и Канады. Ученые воспользовалась превосходными данными по сигам из швейцарских горных озер. В их распоряжении имелись профессионально собранные данные 1940-х годов, а также современные материалы, отражающие разнообразие сигов в начале XXI века (Vonlanthen et al., 2012). В науке так всегда бывает: чем надежнее данные, тем интереснее результат. Не стало исключением и это исследование. Обычно при анализе эволюции оценивают степень расхождения видов, здесь же наблюдали обратное. Ученые зарегистрировали эволюцию, повернувшую вспять.

Использовались данные по 17 озерам в предгорьях Швейцарских Альп. Это глубокие водоемы с хорошо аэрированной водой, изначально олиготрофные, т. е. с малым содержанием органики. В озерах издавна обитали сиги (род Coregonus). Они заселились после освобождения этой территории от ледника (10–12 тыс. лет назад) и начали осваивать новое экологическое пространство. В ходе специализации и разделения ниш в каждом озере образовались «букеты» симпатрических видов (1–5 в каждом озере), в том числе характерные пары экологических аналогов. В каждой такой паре один вид предпочитает мелководья, питается мелкой добычей, нерестует в зимние месяцы; обычно это крупные рыбы с небольшим числом тычинок на жаберных дугах. Второй вид — его контрагент; обычно это мелкая рыба с большим числом жаберных тычинок, предпочитает жить на глубине, а нереститься летом, питается более крупным зоопланктоном. Число жаберных тычинок отражает пищевую специализацию, четко наследуется и считается хорошим маркером видовой принадлежности. Учитывая разночтения систематики рода Coregonus, в озерах насчитывается всего около 25 видов и подвидов сигов.

Уменьшение разнообразия сигов в озерах предгорьев Альп. а — ситуация в начале xx века: существует два вида — крупный и мелкий. Крупный обитает в неглубоких водах, мелкий — где поглубже, число жаберных тычинок у крупного меньше (маленькие гистограммы напротив рыбок) в соответствии с размером предпочитаемой добычи (маленькие графики). Кислорода в воде достаточно. б — ситуация после эвтрофикации, когда в придонных слоях воды мало кислорода. Число жаберных тычинок и размер предпочтительной добычи у мелких рыб уменьшается. в — исчезновение глубоководного вида. У мелководного при этом увеличивается генетический полиморфизм и вариабельность по числу жаберных тычинок и размеру добычи. Из McKinnon, Taylor, 2012.

Таково было состояние озерных систем до 1950-х годов, описанное в классических трудах европейских ихтиологов. Каковы же современные данные? А они таковы, что около четверти видов сигов исчезло из видового реестра, причем вымерли в основном мелкие глубоководные виды. Связано это с загрязнением озер и резким повышением содержания органики в воде. Механизм вымирания на первый взгляд прост. Увеличение количества органики вызывает бурный рост микрофлоры, которая окисляет органику растворенным в воде кислородом. В результате содержание кислорода, особенно в придонных слоях, падает, нерестилища глубоководных рыб оказываются непригодными, молодь гибнет и вид исчезает.

Популярные книги

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

В ожидании осени 1977

Арх Максим
2. Регрессор в СССР
Фантастика:
альтернативная история
7.00
рейтинг книги
В ожидании осени 1977

Гримуар темного лорда II

Грехов Тимофей
2. Гримуар темного лорда
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Гримуар темного лорда II

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Владеющий

Злобин Михаил
2. Пророк Дьявола
Фантастика:
фэнтези
8.50
рейтинг книги
Владеющий

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Лисья нора

Сакавич Нора
1. Всё ради игры
Фантастика:
боевая фантастика
8.80
рейтинг книги
Лисья нора

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4