Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:

Теперь можно утверждать, что «час» и «сутки» имеют регулярную периодичность, т. е. отмечают последовательные равные интервалы времени, хотя нами и не доказано, что каждый из процессов действительно периодичен. Нас могут спросить: а вдруг есть некое всемогущее существо, которое замедляет течение песка ночью и убыстряет днем? Наш эксперимент, конечно, не может дать ответа на такого рода вопросы. Очевидно лишь то, что периодичность одного процесса согласуется с периодичностью другого. Поэтому при определении понятия «время» мы просто будем исходить из повторения некоторых

очевидно периодических событий.

§ 3. Короткие времена

Заметим, что в процессе проверки «воспроизводимости» дней мы нашли метод измерения части дня, т. е. метод измерения меньших промежутков времени. Нельзя ли этот процесс продолжить и научиться измерять еще меньшие промежутки времени?

Галилей предположил, что каждый маятник отклоняется и возвращается назад за равные интервалы времени (если отклонения невелики). Сравнение числа отклонений маятника с «часом» показывает, что это действительно так. Таким способом можно измерять доли «часа». Если для подсчета числа колебаний маятника применить механический счетчик, то мы получим маятниковые часы наших дедов.

Договоримся теперь, что если маятник отклонится 3600 раз в час (и если в сутках 24 часа), то период колебаний такого маятника мы назовем «секундой». Итак, нашу первоначальную единицу «сутки» мы разделили приблизительно на 105 частей. Используя тот же принцип сравнения, можно и секунду разделить на все меньшие и меньшие части. Для этого оказывается более удобным использовать не простой механический, а электрический маятник, называемый осциллятором, период колебаний которого может быть очень малым. В таких электронных осцилляторах роль маятника выполняет электрический ток, который течет то в одном, то в другом направлении.

Давайте представим себе целый ряд таких осцилляторов, что период колебаний каждого последующего в десять раз меньше предыдущего. Это можно проверить путем простого подсчета числа колебаний последующего осциллятора за одно колебание предыдущего; только теперь этот подсчет трудно провести без устройства, расширяющего возможности наблюдения, своеобразного «микроскопа времени». Таким устройством может служить электронно–лучевой осциллограф, на светящемся экране которого строится график зависимости электрического тока, (или напряжения) от времени.

Соединяя осциллограф сначала с одним осциллятором, а затем с другим, мы получим на экране графики зависимости тока от времени в одном и в другом осцилляторе (фиг. 5.2).

Фиг. 5.2. Две осциллограммы, снятые с экрана осциллографа.

а – при осциллографе, подключенном к одному осциллятору; б – при осциллографе, подключенном к осциллятору, период колебаний которого в десять раз меньше первого.

А теперь нетрудно подсчитать, какое число периодов «быстрого» осциллятора укладывается в одном периоде «медленного».

Современная электроника позволяет создавать осцилляторы с периодами 10–12сек, которые выверяются (калибруются) методом сравнения, подобным вышеописанному,

на стандартную единицу времени – секунду. В последние несколько лет в связи с изобретением и усовершенствованием «лазера», или усилителя света, появилась возможность сделать осцилляторы с еще более коротким периодом. Пока еще невозможно калибровать их тем же методом, однако, несомненно, что и это скоро будет достигнуто.

Можно измерять промежутки времени, гораздо более короткие, чем 10–12 сек, но для этого используются совершенно другие методы. В сущности используется другое определение понятия «время». Один из таких методов – это измерение расстояния между двумя событиями, происходящими на движущемся объекте. Например, пусть в движущемся автомобиле сначала включают, а затем выключают фары. Если известно, где были включены и выключены фары и какова была скорость автомобиля, то можно вычислить, сколько времени они горели. Для этого нужно расстояние, на протяжении которого горели фары, разделить на скорость автомобиля.

Именно таким методом в последние годы измерялось время жизни ?0–мезона. При наблюдении в микроскоп мельчайших следов, оставленных на фотоэмульсии, в которой родился ?0–мезон, было обнаружено следующее: ?0–мезон, двигаясь со скоростью, близкой к скорости света, прежде чем распасться, проходит в среднем расстояние около 10–7 м. Таким образом, время жизни ?0–мезона составляет всего лишь 10–16 сек! Необходимо подчеркнуть, что здесь было использовано несколько другое определение понятия «время», но, поскольку оно не приводит к каким–либо противоречиям, можно быть уверенным в том, что эти определения в достаточной мере эквивалентны друг другу.

Развивая технику эксперимента, а если необходимо, меняя определение понятия «время», можно обнаружить еще более быстрые физические процессы. Мы, например, можем говорить о периоде вибраций ядра или о времени жизни недавно обнаруженных «странных» резонансов (частиц), которые уже упоминались в гл. 2. Время жизни этих частиц лишь ненамного больше 10–24 сек! Приблизительно столько времени требуется свету (который имеет наибольшую скорость распространения), чтобы пройти расстояние, равное диаметру ядра водорода (наименьший из известных объектов).

Что можно сказать о еще более коротких интервалах времени? Имеет ли смысл вообще говорить о них, если невозможно не только измерить, но даже разумно судить о процессах, происходящих в течение столь коротких интервалов? Возможно, нет. Это один из тех вопросов, на которые нет ответа. Может быть, кому–нибудь из вас посчастливится ответить на него в ближайшие 20–30 лет.

§ 4. Большие времена

Рассмотрим теперь промежутки времени, большие «суток». Измерять большие времена легко: нужно просто считать дни, пока не придумаем что–нибудь лучшего. Первое, с чем мы сталкиваемся, это год – вторая естественная периодичность, состоящая приблизительно из 365 дней. Интересно, что в природе существуют естественные счетчики лет в виде годовых колец у деревьев или отложений речного ила. В некоторых случаях можно использовать эти естественные счетчики для определения времени, отделяющего нас от какого–либо отдаленного события в прошлом.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Ты предал нашу семью

Рей Полина
2. Предатели
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты предал нашу семью

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Любимая учительница

Зайцева Мария
1. совершенная любовь
Любовные романы:
современные любовные романы
эро литература
8.73
рейтинг книги
Любимая учительница

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III