Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

§ 4. Распределение молекул по скоростям

Обсудим теперь распределение молекул по скоростям, по­тому что интересно, а иногда и полезно знать, какая часть мо­лекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энер­гию силы тяжести. Если бы между атомами существовали вза­имные силы, то нам, конечно, пришлось бы написать что-ни­будь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправда­ние. Мы видим, что на высоте h находится гораздо меньше мо­лекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.

Фиг. 40.4. Высоты h достигают только те молекулы, скорость ко­торых на высоте h=0 достаточно велика.

Но почему же на большей высоте меньше молекул? Разве не все молекулы, живущие на высоте 0, появляются на высоте h? Нет! Потому что на высоте 0 есть молекулы, движущиеся слишком медлен­но, и они не способны взобраться на потенциальную гору до высоты h. Вот и ключ к решению задачи о распределении молекул по скоростям; ведь, зная равенство (40.1), мы знаем число молекул, скорость которых слишком мала для достиже­ния высоты h. Их ровно столько, чтобы создать нужное падение плотности при увеличении h.

Давайте сформулируем все поточнее: подсчитаем, сколько молекул проходит снизу вверх через плоскость h=0 (называя заданный уровень нулевой высотой, мы вовсе не считаем, что здесь пол, просто это удобнее нам для начала отсчета, и на отрицательной высоте может находиться газ). Эти молекулы газа движутся во всех направлениях, и некоторые из них про­ходят через нашу плоскость; таким образом, в любой момент сквозь плоскость снизу вверх проходит известное число мо­лекул в секунду с заданной скоростью. Затем отметим следую­щее: если через uобозначить скорость, необходимую для того, чтобы подняться на высоту h (кинетическая энергия mu2/2=mgh), то число молекул в секунду, поднимающихся с ниж­ней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает и, не

достигают верхней плоскости. Таким об­разом,

Но число молекул, пересекающих h с любой скоростью, большей нуля, меньше числа молекул, пересекающих нижний уровень с любой скоростью, большей нуля, хотя бы потому, что внизу больше атомов. Вот и все, что нам нужно. Мы уже знаем, что распределение молекул по скоростям на всех высо­тах одинаково, ведь мы уже выяснили, что температура во всей атмосфере одинакова. Но поскольку распределение ско­ростей всюду одинаково и число атомов, пересекающих нижний уровень, больше, то ясно, что отношение n>0(h) (числа ато­мов, пересекающих высоту h с положительной скоростью) и n>0(0) (числа атомов, пересекающих с положительной ско­ростью высоту 0) равно отношению плотностей на этих высотах, т. е. ехр(—mgh/kT). Но n>0(h)=h>u(0), поэтому

поскольку 1/2mu2=mgh. Теперь скажем это своими словами: число молекул, пересекающих за 1 сек единичную площадь

на высоте 0 с вертикальной составляющей скорости, превышаю­щей и, равно произведению числа молекул, пересекающих эту площадку со скоростью, большей нуля, на ехр(-mu2/2kT).

Это верно не только для произвольной высоты 0, но и для любой другой высоты, поэтому распределение по скоростям одинаково повсюду! (Окончательный результат не включает высоты h, она появляется только в промежуточных рассужде­ниях.) Это общая теорема о распределении по скоростям. В ней утверждается, что если в столбе газа просверлить крохот­ную дырочку, ну совсем малюсенькую, так что столкновения там будут редки и длина пробега молекул между столкнове­ниями будет много больше диаметра дырочки, то молекулы будут вылетать из нее с разными скоростями, но доля частиц, вылетающих со скоростью, превышающей и, равна ехр(-mu2/2kT).

Теперь вернемся к вопросу о том, можно ли пренебрегать столкновениями. Почему это не имеет значения? Мы могли бы повторить все наши доводы, используя не конечную высоту h, а бесконечно малую высоту h, столь малую, что для столкнове­ний между высотами 0 и h было бы слишком мало места. Но это не обязательно: наши доводы, очевидно, основаны лишь на анализе значений энергий и на сохранении энергии; при столкновениях же происходит обмен энергиями среди молекул. Но нам довольно безразлично, следим ли мы за одной и той же молекулой, раз происходит лишь обмен энергиями с другой молекулой. И получается, что если мы даже сделаем это доста­точно тщательно (а такую работу тщательно проделать, конечно, труднее), то результат будет тот же.

Интересно, что найденное нами распределение по скоростям имеет вид

n>u~eк.э./kT. (40.4)

Этот способ описания распределения по скоростям —когда подсчитывается число молекул, проходящих через выделенную площадку с заданной минимальной z-составляющей скорости,— отнюдь не самый удобный. Например, чаще хотят знать, сколько молекул в заданном объеме газа движется, имея z– составляющую скорости между двумя заданными значениями, а это, конечно, из (40.4) сразу не получишь. Поэтому придадим нашей формуле удобную форму, хотя то, что мы получили, — это весьма общий результат. Заметим, что невозможно утверж­дать, что любая молекула в точности обладает той или иной наперед заданной скоростью; ни одна из них не движется со скоростью, в точности равной 1,7962899173 м/сек. Итак, чтобы придать нашему утверждению какой-то смысл, мы должны спросить, сколько молекул можно найти в заданном интервале скоростей. Нам придется говорить о том, как часто встречаются скорости в интервале между 1,796 и 1,797 и т. п. Выражаясь математически, пусть f(u)du будет долей всех молекул, чьи скорости заключены в промежутке u и u+du, или, что то же самое (если du бесконечно мало), долей всех молекул, имею­щих скорость и с точностью до du. На фиг. 40.5 представлена возможная форма функции f(u), а заштрихованная часть ширины du и средней высоты f(u) — это доля молекул f(u)du. Таким образом, отношение площади заштрихованного участка ко всей площади под кривой равно относительному числу молекул со скоростью и внутри отрезка du.

Фиг. 40.5. Функция, распределения скоростей.

Заштрихованная площадь равна f(u)du это относи­тельное число частиц, ско­рости которых заключены внутри отрезка du около точки u.

Если опре­делить f(u) так, что относительное число молекул будет просто равно площади заштрихованного участка, то полная площадь под кривой — это все 100% молекул, т. е.

Теперь остается только найти это распределение, сравнив его с результатом доказанной ранее теоремы. Сначала надо выяснить, как выразить через f(u) число молекул, проходящих за 1 сек через заданную площадку со скоростью, превышаю­щей u?

Это число не равно интегралу

(хотя это первое, что приходит в голову), ведь нас интересует число молекул, про­ходящих через площадку за секунду. Более быстрые молекулы будут пересекать площадку, так сказать, чаще, чем более мед­ленные, поэтому, чтобы найти число проходящих молекул, надо умножить плотность молекул на скорость. (Мы уже обсуждали это в предыдущей главе, когда подсчитывали число столкновений.)

Популярные книги

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Совок 11

Агарев Вадим
11. Совок
Фантастика:
попаданцы
7.50
рейтинг книги
Совок 11

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

С Д. Том 16

Клеванский Кирилл Сергеевич
16. Сердце дракона
Фантастика:
боевая фантастика
6.94
рейтинг книги
С Д. Том 16

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Экспедиция

Павлов Игорь Васильевич
3. Танцы Мехаводов
Фантастика:
героическая фантастика
альтернативная история
аниме
5.00
рейтинг книги
Экспедиция

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X