Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Магнитный момент той же самой орбиты равен произведению тока на площадь (см. гл. 14, § 5, вып. 5). Ток равен положи­тельному заряду, проходящему в единицу времени через любую точку на орбите, т. е. произведению заряда q на частоту вра­щения. А частота равна скорости, поделенной на периметр орбиты, так что

I=q(v/2pr). Так как площадь равна pr2, то магнитный момент будет

m=qvr/2 (34.2)

Он тоже направлен перпендикулярно плоскости орбиты. Таким образом, J и mимеют одинаковое направление:

m=(q/2m)J(орбиты). (34.3)

Их отношение не зависит

ни от скорости, ни от радиуса. Для любой частицы, движущейся по круговой орбите, магнитный момент равен произведению q/2m на момент количества движе­ния. Для электрона, заряд которого отрицателен (обозначим его через -qe),

m=-(qe/2m)J(для электрона на орбите). (34.4)

Вот что получается в классической физике, и совершенно удивительно, что то же самое справедливо и в квантовой меха­нике. Это один из правильных выводов. Однако если развивать его дальше по пути классической физики, то вы натолкнетесь на такие места, где он даст неправильные ответы; разобраться же потом, какие результаты верны, а какие неверны, — целое дело. Уж лучше я сразу скажу, что в квантовой механике верно в общем случае. Прежде всего соотношение (34.4) остается вер­ным для орбитального движения; однако это не единственное место, где мы встречаемся с магнетизмом. Электрон, кроме того, совершает еще вращение вокруг собственной оси (подобное вращению Земли вокруг ее оси), и в результате этого вращения у него возникает момент количества движения и магнитный мо­мент. Но по чисто квантовомеханическим причинам (классиче­ское объяснение этого совершенно отсутствует) отношение m к J для собственного вращения (спина) электрона в два раза больше, чем для орбитального движения крутящегося элект­рона:

m=-(qe/m)J (спин электрона). (34.5)

В любом атоме, вообще говоря, имеется несколько электро­нов, и его полный момент количества движения и полный маг­нитный момент представляют некоторую комбинацию спиновых и орбитальных моментов. И без каких-либо на то классических оснований в квантовой механике (для изолированного атома) направление магнитного момента всегда противоположно на­правлению момента количества движения. Отношение их не обязательно должно быть -qe/m или -qe/2m; оно расположено где-то между ними, ибо здесь «перемешиваются» вклады от спинов и орбит. Можно записать

'm=-g(qe/2m)J (34.6)

где множитель g характеризует состояние атома. Для чисто орбитальных моментов он равен единице, для чисто спиновых равен 2, а для сложной системы, подобной атому, он расположен где-то между ними. Конечно, пользы от этой формулы не очень много. Она только говорит, что магнитный момент параллелен моменту количества движения, но может иметь любую величину. Тем не менее форма уравнения (34.6) все же удобна, ибо вели­чина g, называемая «фактором Ланде», есть безразмерная по­стоянная порядка единицы. Одна из задач квантовой меха­ники — предсказание фактора g для разных атомных состояний. Быть может, вам интересно знать, что происходит в ядрах атомов. Протоны и нейтроны в ядре движутся по своего рода орбитам и в то же время, подобно электронам, имеют спин. Маг­нитный момент снова параллелен моменту количества движе­ния. Только теперь порядок величины отношения магнитного момента к моменту количества движения для каждой из этих частиц будет таким, как можно было ожидать для протона, движущегося по кругу; при этом массу m в уравнении (34.3) нужно взять равной массе протона.

Поэтому для ядер обычно пишут (в скобках положительная величина)

m=g(qe/2mp)J (34.7)

где mpмасса протона, а постоянная g, называемая ядерным g-фактором,— число порядка единицы, которое должно опре­деляться отдельно для каждого сорта ядер.

Другое важное отличие в случае ядер состоит в том, что g-фактор спинового магнитного момента протона не равен 2, как у электрона. Для протона g=2·(2,79). Крайне удивительно, что спиновый магнитный момент есть и у нейтрона и отношение этого магнитного момента к моменту количества движения равно 2·(-1,93). Другими словами, нейтрон в магнитном смысле не будет в точности «нейтральным». Он напоминает маленький маг­нитик и имеет такой же магнитный момент, как и вращающийся отрицательный заряд.

§ 3. Прецессия атомных магнитиков

Одно из следствий пропорциональности магнитного момента моменту количества движения заключается в том, что атомные магнитики, помещенные в магнитное поле, будут прецессироватъ. Обсудим это сначала с точки зрения классической физики. Пусть у нас имеется магнитный момент m, свободно висящий в однородном магнитном поле. Он испытывает действие момента силы t, равного mXB, пытающегося повернуть его в том же направлении, что и поле. Но атомный магнит — ведь это гиро­скоп, у него есть момент количества движения J. Поэтому момент силы от магнитного поля не вызовет поворота в направлении поля. Вместо этого магнит, как мы видели, когда говорили о гироскопе в гл. 20 (вып. 2), начнет првцессироватъ. Момент количества движения, а вместе с ним и магнитный момент прецессируют вокруг оси, параллельной магнитному полю. Скорость прецессии можно найти тем же мето­дом, что и в гл. 20 (вып. 2).

Предположим, что за малый промежуток времени Dt момент количества движения меняется от J до J' (фиг. 34.3), оставаясь при этом всегда под одним и тем же углом q к направлению маг­нитного поля В.

Фиг. 34.3. Объект в моментом количества движения J и параллельным ему магнитным моментом m в магнитном поле В прецессирует с угловой скоростью w p ,.

Обозначим через wp угловую скорость прецес­сии, так что за промежуток времени Dt угол прецессии будет равен wpDt. Из геометрии рисунка мы видим, что изменение момента количества движения за время Dt равно

DJ=(Jsinq)(wpDt), а скорость изменения момента количества движения

dJ/dt=wpJsinq (34.8)

что должно равняться моменту силы

t=mBsinq. (34.9)

Угловая скорость прецессии будет равна

Поделиться:
Популярные книги

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Вечная Война. Книга VI

Винокуров Юрий
6. Вечная Война
Фантастика:
боевая фантастика
рпг
7.24
рейтинг книги
Вечная Война. Книга VI

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия