Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов

на главную

Жанры

Поделиться:

Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов

Шрифт:
Министерство образования и науки Российской Федерации
Уральский Федеральный университет имени
Первого Президента России Б. Н. Ельцина
Редактор академик РАН Б. Ф. Мясоедов

Рекомендовано методическим советом УрФУ для студентов, обучающихся по направлению подготовки 250900 – Химимческая технология материалов современной энергетики

Введение

На современном этапе интенсивного развития металлургической промышленности, ядерной и тепловой энергетики, использования мощных транспортных средств с ядерными энергетическими установками, непрекращающихся испытаний ядерного оружия, трагических ядерных инцидентов в Кыштыме и Чернобыле важное

место начинают занимать проблемы, связанные с присутствием и поведением в окружающей среде техногенно рассеянных радиоактивных вещеществ.

Особая роль в решении указанных проблем принадлежит сорбционной технологии, в частности, с применением неорганических сорбентов. Последние, по сравнению с органическими ионитами, обладают более высокой селективностью, химической, радиационной и термической устойчивостью. В пятидесятые годы стала очевидна перспективность использования неорганических сорбентов, особенно в гранулированной форме, в радиохимической технологии для переработки высокоактивного облученного ядерного горючего [1], дезактивации сточных вод [2], изготовления источников ионизирующего излучения с высокой удельной активностью [3, с.84], очистки контурных вод ядерных реакторов [4, с.280], концентрирования урана из природных, в частности, морских вод [5], в радиохимическом анализе и аналитической химии [6], в технологии особо чистых неорганических веществ [7] и гидрометаллургии [8], в медицине и биологии [9]. В подавляющем большинстве перечисленных технологических и аналитических задач необходимо концентрировать малые количества радиоактивных или стабильных примесей (микрокомпонентов) из больших объемов водных растворов с разнообразным солевым составом. Некоторые специальные задачи радиохимического анализа производственных растворов и природных вод, в частности, на содержание короткоживущих радионуклидов, включают концентрирование как предварительную стадию и требуют экспрессного проведения этой операции. Неорганические сорбенты в гранулированной форме, полученные известными способами (сушка, замораживание с последующим размораживанием, прессование, гранулирование окатыванием и прессформованием, импрегнирование и осаждение в пористых материалах, получение сферических частиц методом падающей капли [10, с.31]), не удовлетворяют требованиям экспрессного концентрирования микрокомпонентов.

Основное отличие неорганических сорбентов от органических ионообменников состоит в замедленности гелевой диффузии сорбируемых ионов. Причиной диффузионных затруднений является жесткость скелета неорганических полимерных и кристаллических фаз, отсутствие набухания, незначительный размер пор. Поэтому сорбционная способность неорганических сорбентов существенно зависит от степени развития их поверхности, что находит отражение в связи коэффициента закона Генри (kr) с величиной удельной поверхности (Sуд) [11, с.115]:

kr = Cс /Cр= МсVр/Vс Мр= МсVррm h Sуд=kdhSуд, (1)

здесь Cс – концентрация сорбированного микрокомпонента в твердой фазе (моль/см3); Cр– концентрация микрокомпонента в растворе (моль/см3); Мс и Мр – абсолютные количества микрокомпонента соответственно в твердой и жидкой фазах (число атомов); Vс'= Vс = (hS/m) m/ = hSудm, где Vс и Vс'– общий объем сорбента и объем, доступный для сорбции (см3); m и m'=hS – общая масса сорбента и масса сорбента, доступная для сорбции (г); h – толщина сорбционного слоя (см); S – поверхность сорбционного слоя (см2); -плотность сорбента (г/см3); Sуд=S/m – удельная поверхность сорбента (см2/г); kd = МсVррm – коэффициент распределения, определяемый в опыте (см3/г). Отсюда

kd=krhSуд (2)

Подобная зависимость коэффициента распределения от величины удельной поверхности подтверждается экспериментально [12].

Принципиально высокой удельной поверхностью могут обладать мелкодисперсные материалы с радиусом частиц, равным толщине сорбционного слоя (r=h). В этом случае весь объем сорбирующего материала становится доступным для сорбции (=1) и коэффициент распределения при дальнейшем уменьшении размера частиц перестает зависеть от удельной поверхности (kd= kr). Однако мелкодисперсные материалы не пригодны для загрузки хроматографических колонн из-за большого гидравлического сопротивления потоку жидкости.

Увеличение размера частиц путем гранулирования до единиц миллиметра не во всех случаях приводит к формированию пористых гранул с высокоразвитой поверхностью [13]. Так в случае легкокристаллизующихся неорганических осадков происходит быстрая кристаллизация, сопровождающаяся срастанием первичных кристаллитов друг с другом, вследствие чего поверхность их, а, следовательно, и сорбционная способность уменьшаются. Например, осадки сульфидов металлов по этой причине имеют небольшую удельную поверхность (около 1м2/г) [14].

Выделяют по крайней мере четыре текстурных типа гелей, которые формируются из кристаллитов одного и того же размера, но различаются по их взаимному расположению в грануле материала [15]. Текстурный тип матрицы неорганического сорбента в значительной мере определяет его селективность и кинетические характеристики. Научные основы направленного регулирования пористой структуры неорганических сорбентов и катализаторов созданы большой группой физико-химиков на примере детального изучения силикагеля, производство которого в гранулированной форме уже давно освоено промышленностью. Подробный обзор этих работ приводит И. Е. Неймарк [13].

Результаты фундаментальных исследований за последние годы положены в основу синтеза и других групп неорганических сорбентов в гранулированной форме [16-18]. Получающиеся сорбенты представляют собой сферические гранулы, характеризующиеся высокой удельной поверхностью, значительной ионообменной емкостью, механически устойчивы и рекомендованы для решения многочисленных технологических задач [8-10]. Однако и для этих сорбентов массоперенос сорбируемых ионов лимитируется диффузией в транспортных порах [19], а время полуобмена велико [18].

Предложение И. В. Мелихова о получении неорганических сорбентов с оптимальной иерархической структурой находится пока еще на стадии лабораторной проверки [20]. Поэтому заманчивой представляется идея исключить из гранулы неорганического ионообменника ее внутреннюю, балластную при сорбции микрокомпонентов часть, оставив лишь наружную поверхность, соизмеримую по толщине с толщиной сорбционного слоя (h). Реализации идеи благоприятствовало то обстоятельство, что начатые С. Г. Мокрушиным [20] еще в 30-е годы исследования ламинарных систем привели к развитию теории и практики химических методов осаждения тонких пленок различных неорганических веществ на поверхности подложек разнообразной природы [21].

Химические методы осаждения пленок из водных растворов положены в основу синтеза новой разновидности гранулированных неорганических коллекторов – тонкослойных неорганических сорбентов (ТНС) [22-30]. Для получения ТНС могут быть использованы гранулы органических и неорганических носителей. В некоторых случаях представляют интерес носители в форме пластин, волокон и т.п. Для такого рода сорбентов можно было ожидать улучшения сорбционно-кинетических характеристик неорганических коллекторов в силу уменьшения вклада внутренней диффузии сорбата. ТНС принципиально отличаются от сорбентов, полученных методом импрегнирования, как более высокой механической устойчивостью, так и возможностью нанесения пленок на непористые, ненабухающие материалы с гладкой поверхностью (стекло, пластмассы и т.п.) при полном покрытии пленкой всей поверхности носителя.

Комментарии:
Популярные книги

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Удобная жена

Волкова Виктория Борисовна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Удобная жена

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4