Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов
Шрифт:
Гидоксид железа имеет значительные основные свойства, что обусловливает положительный заряд его поверхности вплоть до нейтральной области рН. Особенно заметно сказывается влияние рН среды на знак и величину заряда поверхности амфотерных оксидов.
Необходимо отметить, что противоионы двойного электрического слоя могут обмениваться на другие ионы того же знака, т.е. способны к ионному обмену, что особенно ярко проявляется у ионообменных материалов.
В
Основу составляет агрегат, который состоит из труднорастворимого соединения SiO2, и является электронейтральным. При рН>2 на поверхности агрегата находятся прочно адсорбированные ОН– , которые образуют слой потенциалопределяющих ионов и составляют внутреннюю оболочку двойного электрического слоя (ДЭС). Агрегат со слоем потенциалобразующих ионов представляет собой ядро коллоида. Ядро имеет заряд потенциалобразующих ионов. Компенсируют заряд ядра – противоионы, которые составляют адсорбционную (плотную) часть и диффузную часть слоя противоионов ДЭС. Ядро с противоионами, находящимися в адсорбционной части, образует гранулу или частицу. Гранула с противоионами, находящимися в диффузной части, образует мицеллу. Мицелла, как и агрегат, электронейтральна.
Следует отметить, что в зависимости от состава и свойств среды может изменяться не только слой противоионов, но и слой потенциалобразующих ионов.
Мицеллы создают в дисперсной системе соответствующую противоионам ионную среду – суспензионный эффект. Если противоионами являются Н+ или ОН– ионы, то среда приобретает соответственно кислый или щелочной характер.
Суспензионный эффект количественно можно определить как разность между концентрациями противоионов в суспензии и фильтрате. При определении кислотно-основных свойств дисперсной фазы суспензионный эффект рассчитывается по соотношению:
рНСЭ = рНС – рНФ, т.е. по разности рН суспензии и фильтрата. Суспензионный эффект возрастает с увеличением концентрации дисперсной фазы, а при постоянной массовой концентрации дисперсной фазы – с увеличением ее дисперсности (возрастает межфазная поверхность и, соответственно, концентрация противоионов). Суспензионный эффект уменьшается с повышением концентрации электролитов в системе, что связано с сжатием двойного электрического слоя.
Под устойчивостью дисперсных систем понимают постоянство их свойств во времени: по дисперсности, по распределению по объему частиц дисперсной фазы и по межчастичному взаимодействию. В данном случае имеется в виду устойчивость по отношению к укрупнению или агрегации частиц дисперсной фазы и их осаждению. Все эти процессы характерны для свободно дисперсных систем.
Таким образом, устойчивость дисперсных систем подразделяют на:
• седиментационную устойчивость – устойчивость к осаждению дисперсной фазы, т.е. способность системы сохранять равномерное распределение частиц дисперсной фазы по объему дисперсионной среды или устойчивость системы к разделению фаз;
• агрегативную устойчивость – устойчивость к агрегации ее частиц.
Агрегативно неустойчивые системы – системы, в которых протекают процессы самопроизвольного укрупнения частиц, т.е. происходит снижение поверхностной энергии засчет уменьшения удельной поверхности.
Укрупнение частиц может идти двумя путями:
1. перенос вещества от мелких частиц к крупным. В результате мелкие частицы постепенно растворяются, а крупные растут;
2. процесс коагуляции, заключающийся в слипании, слиянии частиц. Это наиболее характерный и общий процесс для дисперсных систем.
В общем случае под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. В разбавленных системах коагуляция приводит к потере седиментационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие дисперсной фазы с макроповерхностями.
В концентрационных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда, т.е. происходит переход из свободно дисперсной системы в связно дисперсную.
Рис. 1.13. Процессы, протекающие в дисперсных системах [8].
Основные процессы, происходящие в дисперсных системах, приведены на рис. 1.13. Устойчивая свободно дисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной их фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы (флокуляция – образование агрегатов из нескольких частиц, разделенных прослойками среды), или коагуляционные структуры, отличающиеся подвижностью частиц относительно друг друга под действием относительно небольших нагрузок. Происходит образование геля – структурированной дисперсной системы, представляющей из себя сплошную пространственную сетку, заполненную жидкостью. Обратный процесс – пептизация.
В целом, под коагуляционными структурами понимают структуры, которые образуются при коагуляции. Взаимодействие частиц дисперсной фазы в них осуществляется через прослойки дисперсионной среды, является, как правило, молекулярным, и каркас такой структуры не отличается высокой прочностью. Механические свойства коагуляционных структур определяются не столько свойствами частиц, образующих определенную структуру, сколько характером и особенностями межчастичных связей и прослоек среды. Для них характерна способность восстанавливать структуру во времени после ее механического разрушения.
Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге образуются жесткие агрегаты из твердых частиц или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой. В конденсированных системах образуются жесткие объемные конденсационные структуры твердых тел, путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры (металлы, сплавы, керамика, бетон и др.). В концентрированных системах образуются жесткие объемные конденсационные структуры твердых тел, которые снова можно превратить в свободнодисперсную систему только путем принудительного диспергирования.