Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов
Шрифт:
Таким образом, понятие коагуляции включает в себя несколько процессов, идущих с уменьшением удельной поверхности системы.
Агрегативная устойчивость нестабилизированных лиофобных дисперсных систем носит кинетический характер, и судить о ней можно по скорости процессов, вызываемых избытком поверхностной энергии. Однако, агрегативная устойчивость может носить и термодинамический характер. Лиофильные системы термодинамически агрегативно устойчивы, они образуются самопроизвольно, и для них процесс коагуляции вообще не характерен. Рассмотрим более подробно термодинамические и кинетические факторы устойчивости дисперсных систем.
1. Термодинамические факторы. Вследствие того, что движущей силой коагуляции является избыточная поверхностная энергия, то основными факторами, обеспечивающими устойчивость дисперсных систем (при сохранении размера поверхности) будут те, которые снижают поверхностное натяжение. Они уменьшают вероятность
1.1. Электростатический фактор заключается в уменьшении межфазного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов.
1.2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения при взаимодействии частиц дисперсной фазы со средой (благодаря адсорбции и сольватации).
При действии адсорбционно-сольватного фактора устойчивости в отсутствии ДЭС поверхностное натяжение уменьшается в результате сольватации поверхностных частиц.
Поверхность частиц в системах с адсорбционно-сольватным фактором устойчивости лиофильна по своей природе или лиофилизирована вследствие адсорбции стабилизаторов – неэлектролитов, имеющих сродство к растворителю. В результате взаимодействия частиц со средой на их поверхности формируются сольватные слои, которые перекрываются при сближении частиц, что снижает стресление системы к коагуляции. Механизм действия сил отталкивания можно представить как совершение работы для разрушения сольватных слоев и для частичной десорбции молекул из них при сближении частиц. Системы, в которых действует адсорбционно-сольватный фактор, могут быть агрегативно устойчивы даже при практическом отсутствии электрического потенциала на поверхности. Действие электролитов в этих системах подобно эффекту высаливания ими в растворах неэлектролитов, т.е. сводится к уменьшению активности растворителя. Особенно большую роль играет адсорбционно-сольватный фактор в системах с неполярными средами, в которых возможности диссоциации и образования ДЭС проявляются слабо (растворы ПАВ). Интересно, что для дисперсных систем оксидов факторы устойчивости могут изменяться в зависимости от рН среды. Особенно сильно эта зависимость выражена для золей SiO2. Например, гидрозоль SiO2 при рН = 7, 0 – 8, 0 устойчив главным образом благодаря адсорбционно-сольватному фактору. Он не коагулирует при введении электролита даже в концентрациях 1 моль/л и более. С увеличением рН гидроксильные группы диссоциируют, фактор устойчивости меняется на электростатический, и золь становится более чувствительным к электролитам. Для частиц более осн'oвных оксидов характерно увеличение положительного заряда на поверхности с ростом кислотности среды, вследствие того, что гидроксильные группы переходят с поверхности в раствор и нейтрализуются ионами водорода. Например, золь оксида Fe более устойчив в кислой среде, в которой частицы имеют положительный заряд. Менее осн'oвные оксиды в кислой среде (ниже ИЭТ) приобретают положительный заряд в результате адсорбции ионов Н+ на гидроксильных группах поверхности.
1.3. Энтропийный фактор, как и первые два относится к термодинамическим и действует в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему (как и распределение растворенного вещества в истинных растворах). Энтропийный фактор устойчивости характерен для систем, в которых или сами частицы, или их поверхностные слои вовлечены в тепловое движение среды. Если золь термодинамическиагрегативно устойчив, то именно энтропийный фактор обеспечивает равномерное распределение частиц по объему среды, т.е. наибольшую их хаотичность (энтропийное отталкивание среды). Его можно представить как наличие постоянной диффузии частиц из области системы с большой концентрацией в область с меньшей концентрацией, т.е. система постоянно стремится к выравниванию по всему объему концентрации дисперсной фазы. Сближение частиц приводит к уменьшению степеней свободы, но т.к. рост энтропии (самопроизвольный процесс) связан с их увеличением, то частицы опять расталкиваются. Очевидно, что при стабилизации ркальных дисперсных систем с помощью электростатического или адсорбционно-сольватного факторов действует и энтропийный фактор агрегативной устойчивости.
2. Кинетические факторы, снижающие скорость коагуляции, связаны в основном с гидродинамическими свойствами среды: с замедлением сближения частиц, разрушением прослоек среды между ними.
2.1. Структурно – механический фактор. Его действие обусловлено тем, что на поверхности частиц имеются пленки, обладающие упругостью и механической прочностью, разрушение которых требует затраты энергии и времени.
2.2. Гидродинамический фактор снижает скорость коагуляции благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.
Для реальных систем наиболее характерны смешанные факторы. Особенно высокая устойчивость наблюдается при действии термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.
Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые вызывают сжатие ДЭС. Сольватация при адсорбционно-сольватном факторе может быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического факторы можно уменьшить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.
Суспензии и лиозоли – системы с твердой дисперсной фазой и жидкой дисперсионной средой, которые различаются размерами частиц. Вместе с тем при одной и той же природе фаз поверхностные свойства отдельных частиц практически одинаковы. Электрический потенциал и структура ДЭС (поверхностные свойства) мало зависят от размеров частиц. Однако увеличение удельной поверхности в дисперсной системе приводит к повышению концентрации противоионов двойного слоя, что в свою очередь может влиять на многие свойства системы, в том числе и на свойства этого слоя. Например, суспензионный эффект возрастает не только с увеличением концентрации дисперсной фазы, но и с повышением ее дисперсности (при постоянной массовой концентрации дисперсной фазы), т.е. с увеличением межфазной поверхности в суспензии. Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензии не участвуют в броуновском движении. В отличие от лиозолей суспензии седиментационно неустойчивы, скорость коагуляции связана в основном со свойствами поверхностных слоев.
Энтропийный фактор агрегативной устойчивости лиозолей обусловлен тепловым движением каксамих частиц, так и их поверхностных слоев, что обеспечивает равномерное распределение частиц по объему дисперсионной среды. У суспензий этот фактор действует только благодаря тепловой подвижности поверхностных слоев, которая может предотвращать коагуляцию, но обычно недостаточна для обеспечения седиментационной устойчивости.
Агрегативно устойчивые и неустойчивые суспензии и лиозоли проявляютсущественные различия при образовании осадков в результате коагуляции. Это проявляется в объеме осадков и их структуре. В агрегативно устойчивых системах оседание частиц происходит медленно и формируется очень плотный осадок. Объясняется это тем, что поверхностные слои препятствуют агрегированию частиц. В агрегативно неустойчивой системеоседание частиц происходит значительно быстрее вследствие образования агрегатов. Однако выделяющийся оадок занимает гораздо больший объем, т.к. частицы сохраняют то случайное взаимное расположение, в котором они оказались при первом же контакте. Силы сцепления между ними соизмеримы с их силой тяжести или больше ее. Причиной рыхлости осадков в агрегативно неустойчивых системах является анизометрия образующихся первичных агрегатов или флокул. Исследования показывают, что наиболее вероятны цепочечные и спиральные первоначальные агрегаты, из которых затем получаются осадки большого объема. Свойства осадков обычно регулируют изменением рН или добавлением ПАВ. Увеличение концентрации дисперсной фазы способствует образованию объемной структуры в агрегативно неустойчивых системах. Этот факт широко используется для предотвращения седиментации, в частности при получении устойчивых золей.
Ярко выраженной особенностью лиозолей является их обратимость – способность к пептизации после коагуляции. Переход коагулята в золь зависит, главным образом, от степени лиофильности золя и от времени, прошедшего с момента коагуляции. Если коагуляция вызвана снижением действия того или иного фактора устойчивости, то для осуществления пептизации, как обратного процесса, требуется восстановление действия этого фактора. Если коагуляция проходила под действием электролитов, то пептизацию можно вызвать промыванием осадка чистым растворителем. Можно увеличить заряд на частицах путем изменения рН среды, уменьшить межфазное напряжение с помощью ПАВ и т.д. Пептизация возможна только в том случае, если частицы в коагуляте не находятся в непосредственном контакте, а между ними имеются прослойки дисперсионной среды. Необходимо иметь в виду, что с увеличением времени контакта частиц в коагуляте происходит постепенное их срастание, после чего обратимая пептизация становится невозможной. Срастанию частиц способствует наличие растворимой составляющей (вещества частиц в растворенном состоянии), обеспечивающей перенос вещества в зону контакта.
Одним из вариантов коагуляции является взаимная коагуляция разнородных дисперсных систем – гетерокоагуляция. Если поверности дисперсных фаз смешиваемых систем имеют заряды противоположного знака, то гетерокоагуляция проходит тем полнее, чем полнее произойдет нейтрализация зарядов частиц. При смешении систем с одноименно заряженными частицами, как правило, образуются устойчивые смешанные системы.
Гетерокоагуляция широко используется в процессах водоподготовки и очистки сточных вод. В воду добавляют минеральные коагулянты: например, соли алюминия, железа, магния, кальция. Эти соли снижают агрегативную устойчивость системы, и частицы загрязняющих веществ выпадают в осадок. Эффективность очистки воды от коллоидных дисперсий определяется не только снижением электростатического барьера, а главным образом гетерокоагуляцией. Соли алюминия и железа образуют в результате гидролиза малорастворимые в воде гидроксиды, частицы которых приобретают избыточный положительный заряд, взаимодействуя с ионами водорода. Кроме того, гидроксиды выделяются преимущественно на частицах примесей, что также способствует укрупнению частиц и очистке раствора от примесей.