Чтение онлайн

на главную - закладки

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:
empty-line/>

Как видно из кода внутренних рекурсивных процедур, возможность прекращения обхода в любой момент времени делает код несколько менее читабельным и более сложным.

Исходный код класса TtdBinaryTree можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDBinTre.pas.

Деревья бинарного поиска

Хотя бинарные деревья являются структурами данных, которые представляют интерес и сами по себе, на практике в основном используют бинарные деревья, содержащие элементы в сортированном виде. Такие бинарные деревья называют

деревьями бинарного поиска (binary search tree).

В дереве бинарного поиска каждый узел имеет ключ. (В деревьях бинарного поиска, которые будут построены в этой главе, считается, что ключ является частью элемента, вставляемого в дерево. Для сравнения двух элементов, а, следовательно, и их ключей, мы будем использовать подпрограмму TtdConrpare.) Упорядочение применяется ко всем узлам в дереве: для каждого узла ключ левого дочернего узла меньше или равен ключу узла, а этот ключ, в свою очередь, меньше или равен ключу правого дочернего узла. Если описанное упорядочение постоянно применяется во время вставки (как именно - будет показано чуть ниже), это также означает, что для каждого узла все ключи в левом дочернем дереве меньше или равны ключу узла, а все ключи в правом дочернем дереве больше или равны ключу узла.

Какие основные операции претерпевают изменения в случае использования дерева бинарного поиска вместо обычного бинарного дерева? Что ж, все алгоритмы обхода работают так же, как и ранее (фактически, при симметричном обходе все узлы в дереве бинарного поиска посещаются в порядке ключей - отсюда и английское название этого метода "in-order"). Однако операции вставки и удаления должны быть изменены, поскольку они могут нарушить порядок ключей в дереве бинарного поиска. Поиск элемента может быть выполнен значительно быстрее.

Алгоритм поиска в дереве бинарного поиска использует упорядоченность дерева. Поиск элемента выполняется следующим образом. Поиск начинается с корневого узла, и этот узел становится текущим. Затем ключ искомого элемента сравнивается с ключом текущего узла. Если они равны, дело сделано, поскольку мы нашли требуемый элемент в дереве. В противном случае, если ключ элемента меньше ключа текущего узла, мы делаем левый дочерний узел текущим. Если он больше, мы делаем текущим правый дочерний узел и возвращаемся к шагу выполнения сравнения. Со временем мы либо найдем нужный узел, либо встретим нулевой дочерний узел, что свидетельствует об отсутствии искомого элемента в дереве.

Следует отметить одну особенность этого алгоритма в случае наличия в дереве нескольких элементов с равными ключами: не существует никаких гарантий, что мы найдем какой-то конкретный элемент с соответствующим ключом. Им может оказаться первый элемент, последний или любой промежуточный. Фактически, в основном по тем же причинам, что и при использовании списка с пропусками, желательно гарантировать, чтобы все элементы в дереве бинарного поиска имели уникальные, различающиеся между собой ключи. Присутствие дублированных ключей не допускается. На практике это правило не создает особых трудностей: если можно различить два элемента, должно быть не трудно обеспечить их различение и в дереве бинарного поиска. Обычно это достигается за счет использования младших ключей (например, фамилия служит в качестве главного ключа, а имя - в качестве контрольного значения, когда фамилии совпадают). Таким образом, деревья бинарного поиска, рассмотренные в этой главе, будут подчиняться правилу недопустимости дублированных ключей. В результате определение дерева бинарного поиска будет формулироваться

следующим образом: это дерево, в котором ключ левого дочернего узла строго меньше ключа данного узла, который, в свою очередь, строго меньше ключа правого дочернего узла.

Алгоритм поиска в дереве бинарного поиска имитирует стандартный бинарный поиск в массиве или в связном списке. В каждом узле мы принимаем решение, какой дочерней связью нужно следовать. При этом можно игнорировать все узлы, находящиеся в другом дочернем дереве. Если дерево сбалансировано, алгоритм поиска является операцией типа O(log(n)). Другими словами, среднее время, затрачиваемое на поиск любого элемента, пропорционально log(_2_) от числа элементов в дереве. Под сбалансированным мы будем понимать дерево, в котором длина пути от любого листа до корневого узла приблизительно одинакова, причем дерево имеет минимальное количество уровней, необходимое для данного количества присутствующих узлов.

Листинг 8.13. Поиск в дереве бинарного поиска

function TtdBinarySearchTree.bstFindItem(aItem : pointer;

var aNode : PtdBinTreeNode;

var aChild : TtdChildType): boolean;

var

Walker : PtdBinTreeNode;

CmpResult : integer;

begin

Result := false;

{если дерево пусто, вернуть нулевой и левый узел для указания того, что новый узел, в случае его вставки, должен быть корневым}

if (FCount = 0) then begin

aNode := nil;

aChild := ctLeft;

Exit;

end;

{в противном случае перемещаться по дереву}

Walker := FBinTree.Root;

CmpResult := FCompare(aItem, Walker^.btData);

while (CmpResult <> 0) do

begin

if (CmpResult < 0) then begin

if (Walker^.btChild[ctLeft] = nil) then begin

aNode := Walker;

aChild := ctLeft;

Exit;

end;

Walker := Walker^.btChild[ctLeft];

end

else begin

if (Walker^.btChild[ctRight] =nil) then begin

aNode := Walker;

aChild := ctRight;

Exit;

end;

Walker := Walker^.btChild[ctRight];

end;

CmpResult := FCompare(aItem, Walker^.btData);

end;

Result := true;

aNode := Walker;

end;

function TtdBinarySearchTree.Find(aKeyItem : pointer): pointer;

var

Node : PtdBinTreeNode;

ChildType : TtdChildType;

begin

if bstFindItem(aKeyItem, Node, ChildType) then

Result := Node^.btData else

Result := nil;

end;

В коде, представленном в листинге 8.13, не используются отдельные ключи для каждого элемента. Вместо этого предполагается, что свойство упорядочения дерева бинарного поиска определяется функцией сравнения, подобно тому, как это делалось в отсортированных связных списках, списках с пропусками и т.п. Функция сравнения дерева бинарного поиска объявляется конструктором Create.

Метод Find использует внутренний метод bstFindItem. Этот метод должен вызываться для достижения двух различных целей. Во-первых, самим методом Find, и, во-вторых, методом, который вставляет новые узлы в дерево (этот метод мы рассмотрим несколько позже). Соответственно, если элемент не был найден, метод будет возвращать место, в которое он должен быть вставлен. Естественно, эта функция не требуется для простого поиска: нам нужно только знать, существует ли элемент, и если существует, то получить элемент целиком обратно.

Поделиться:
Популярные книги

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

Идущий в тени 6

Амврелий Марк
6. Идущий в тени
Фантастика:
фэнтези
рпг
5.57
рейтинг книги
Идущий в тени 6

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Маленькая слабость Дракона Андреевича

Рам Янка
1. Танцы на углях
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
Маленькая слабость Дракона Андреевича

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Последняя Арена

Греков Сергей
1. Последняя Арена
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.20
рейтинг книги
Последняя Арена