Чтение онлайн

на главную

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

aNode^.btParent^.btChild[ctRight] := aNode/ aNode^.btChild[ctLeft] := Parent;

Parent^.btParent := aNode;

end;

{вернуть узел, ранг которого был повышен}

Result := aNode;

end;

Этот метод заимствован из класса скошенного дерева, который будет рассматриваться несколько позже. А пока важно отметить способ разрыва и преобразования связей, используемый для выполнения обоих типов повышения ранга. Поскольку переданный методу узел может быть левым или правым дочерним узлом, имеющим различные связи, которые необходимо разорвать и перестроить, по существу, этот метод представляет собой оператор If, учитывающий

две возможности.

Два рассмотренных вида поворота реорганизуют дерево на локальном уровне, но основное свойство упорядоченности узлов дерева бинарного поиска остается неизменным. В случае выполнения поворота вправо все узлы дерева а перемещаются на один уровень ближе к корневому узлу, те, которые расположены в дереве b, остаются на том же уровне, а расположенные в дереве с, перемещаются на один уровень вниз. При выполнении поворота влево все узлы дерева а перемещаются на один уровень дальше от корневого узла, узлы дерева b остаются на том же уровне, а узлы дерева с перемещаются на один уровень вверх. Несложно догадаться, что, управляя некоторым общим алгоритмом балансировки, с помощью последовательности этих двух поворотов можно было бы восстановить баланс в дереве бинарного поиска.

Часто эти два вида поворота объединяются попарно и используются в формах так называемых спаренных двухсторонних поворотов (zig-zag) и спаренных односторонних поворотов (zig-zig). Существуют две операции спаренного двустороннего поворота и две операции спаренного одностороннего поворота. Операция спаренного двустороннего поворота состоит либо из поворота вправо, за которым следует поворот влево, либо из поворота влево, за которым следует поворот вправо, причем конечным результатом обеих операций является повышение ранга узла на два уровня. И напротив, операции спаренного одностороннего поворота состоят из двух выполняемых последовательно поворотов вправо или влево. Цель выполнения всех этих спаренных операций состоит в повышении ранга узла на два уровня.

На рис. 8.4 показана операция спаренного двустороннего поворота, которая начинается с поворота влево вокруг узла P. В результате ранг узла R повышается, а ранг узла P понижается. На следующем шаге выполняется вращение вправо вокруг узла G, в результате которого ранг узла R снова повышается, а ранг узла G понижается. Общим результатом операции спаренного двустороннего поворота будет локальная балансировка дерева.

Рисунок 8.4. Операция спаренного двустороннего поворота

На рис. 8.5 изображены обе операции спаренного одностороннего поворота, поскольку они дополняют друг друга. Обратите взимание, что операция спаренного одностороннего поворота всегда начинается с поворота вокруг верхнего узла.

Рисунок 8.5. Операция спаренного одностороннего поворота

Скошенные деревья

Как бы то ни было, ознакомившись с этими операциями простых и спаренных двухсторонних и односторонних поворотов, мы может их использовать в структуре данных, называемой скошенным деревом. Скошенное дерево (splay tree) - это дерево бинарного поиска, сконструированное таким образом, что любое обращение к узлу приводит к его скосу в

сторону корневого узла. Скос заключается в применении операций спаренного двустороннего или одностороннего поворота до тех пор, пока скашиваемый узел не окажется в позиции корневого узла дерева или на один уровень ниже него. В последнем случае его ранг можно повысить до корневого узла, выполнив одиночный поворот. Концепция скошенного дерева была изобретена Д. Д. Слеатором (D. D. Sleator) и Р. Е. Таръяном (R. E. Tarjan) в 1985 году [22].

Вначале рассмотрим операцию поиска, т.е. нахождение конкретного узла. Мы начнем с применения стандартного алгоритма поиска в дереве бинарного поиска. Обнаружив искомый узел, мы выполняем его скос к корневому узлу.

Иначе говоря, мы применяем операции спаренного двустороннего либо одностороннего поворота, перемещая узел вверх по дереву до тех пор, пока он не достигнет позиции корневого узла. Если в результате этих операций узел оказывается на втором уровне, мы больше не можем применять операции спаренного поворота, и поэтому для перемещения в позицию корневого узла применяем поворот влево или вправо.

Если поиск был безрезультатным, в ходе него мы должны натолкнуться на нулевой узел. В этом случае мы выполняем скос узла, который был бы родительским узлом, если бы искомый узел существовал. Естественно, при этом следовало бы сообщить о невозможности как-либо найти элемент.

Вставку также легко описать: необходимо применить обычный алгоритм вставки в дерево бинарного поиска, а затем выполнить скос добавленного узла.

Чтобы выполнить удаление, мы выполняем обычное удаление из дерева бинарного поиска, а затем выполняем скос родительского узла того узла, который был удален.

Обобщая, можно сказать, что скошенное дерево предоставляет нам самоизменяющуюся структуру — структуру, характеризующуюся тенденцией хранить узлы, к которым часто происходит обращение, вблизи верхушки дерева, в то время как узлы, к которым обращение происходит редко, перемещаются по направлению к листьям. В общем случае время обращения к часто посещаемым узлам будет меньше, а время обращения к редко посещаемым узлам — больше среднего. Важно отметить, что скошенное дерево не обладает никакими явными функциями балансировки, но практика свидетельствует, что скос способствует достаточно успешному поддержанию дерева в сбалансированном состоянии. В среднем время поиска в скошенном дереве пропорционально O(log(n)).

Реализация класса скошенного дерева

Класс TtdSplayTree представляет собой простой производный класс класса TtdBinarySearchTree, в котором перекрыты методы Delete, Find и Insert и объявлены новые внутренние методы скоса и повышения ранга узла. Код интерфейса этого класса приведен в листинге 8.18.

Листинг 8.18. Интерфейс класса TtdSplayTree

type

TtdSplayTree = class (TtdBinarySearchTree) private protected

function stPromote(aNode : PtdBinTreeNode): PtdBinTreeNode;

procedure stSplay(aNode : PtdBinTreeNode);

public

procedure Delete(aItem : pointer); override;

function Find(aKeyItem : pointer): pointer; override;

procedure Insert(aItem : pointer); override;

end;

Перекрытый метод Find (см. листинг 8.19) реализует обычную операцию поиска в дереве бинарного поиска и, если узел найден, выполняет его скос к корневому узлу.

Листинг 8.19. Метод TtdSplayTree.Find

function TtdSplayTree.Find(aKeyItem : pointer): pointer;

Поделиться:
Популярные книги

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника