Чтение онлайн

на главную

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

Кодирование Хаффмана

Алгоритм кодирования Хаффмана очень похож на алгоритм сжатия Шеннона-Фано. Этот алгоритм был изобретен Девидом Хаффманом (David Huffman) в 1952 году ("A method for the Construction of Minimum-Redundancy Codes" ("Метод создания кодов с минимальной избыточностью")), и оказался еще более удачным, чем алгоритм Шеннона-Фано. Это обусловлено тем, что алгоритм Хаффмана математически гарантированно создает наименьший по размеру код для каждого из символов исходных данных.

Аналогично применению алгоритма Шеннона-Фано, нужно построить бинарное дерево,

которое также будет префиксным деревом, где все данные хранятся в листьях. Но в отличие от алгоритма Шеннона-Фано, который является нисходящим, на этот раз построение будет выполняться снизу вверх. Вначале мы выполняем просмотр входных данных, подсчитывая количество появлений значений каждого байта, как это делалось и при использовании алгоритма Шеннона-Фано. Как только эта таблица частоты появления символов будет создана, можно приступить к построению дерева.

Будем считать эти пары символ-количество "пулом" узлов будущего дерева Хаффмана. Удалим из этого пула два узла с наименьшими значениями количества появлений. Присоединим их к новому родительскому узлу и установим значение счетчика родительского узла равным сумме счетчиков его двух дочерних узлов. Поместим родительский узел обратно в пул. Продолжим этот процесс удаления двух узлов и добавления вместо них одного родительского узла до тех пор, пока в пуле не останется только один узел. На этом этапе можно удалить из пула один узел. Он является корневым узлом дерева Хаффмана.

Описанный процесс не очень нагляден, поэтому создадим дерево Хаффмана для предложения "How much wood could a woodchuck chuck?" Мы уже вычислили количество появлений символов этого предложения и представили их в виде таблицы 11.1, поэтому теперь к ней потребуется применить описанный алгоритм с целью построения полного дерева Хаффмана. Выберем два узла с наименьшими значениями. Существует несколько узлов, из которых можно выбрать, но мы выберем узлы "m" и Для обоих этих узлов число появлений символов равно 1. Создадим родительский узел, значение счетчика которого равно 2, и присоединим к нему два выбранных узла в качестве дочерних. Поместим родительский узел обратно в пул. Повторим цикл с самого начала. На этот раз мы выбираем узлы "а" и "Д.", объединяем их в мини-дерево и помещаем родительский узел (значение счетчика которого снова равно 2) обратно в пул. Снова повторим цикл. На этот раз в нашем распоряжении имеется единственный узел, значение счетчика которого равно 1 (узел "Н") и три узла со значениями счетчиков, равными 2 (узел "к" и два родительских узла, которые были добавлены перед этим). Выберем узел "к", присоединим его к узлу "H" и снова добавим в пул родительский узел, значение счетчика которого равно 3. Затем выберем два родительских узла со значениями счетчиков, равными 2, присоединим их к новому родительскому узлу со значением счетчика, равным 4, и добавим этот родительский узел в пул. Несколько первых шагов построения дерева Хаффмана и результирующее дерево показаны на рис. 11.2.

Рисунок 11.2. Построение дерева Хоффмана

Используя это дерево точно так

же, как и дерево, созданное для кодирования Шеннона-Фано, можно вычислить код для каждого из символов в исходном предложении и построить таблицу 11.5.

Таблица 11.5. Коды Хаффмана для символов примера предложения

Символ - Количество появлений

Пробел - 00

c - 100

o - 101

u - 010

d - 1100

h - 1101

w - 1110

k - 11110

H - 11111

a - 01100

l - 01101

m - 01110

?
– 01111

Обратите внимание, что эта таблица кодов - не единственная возможная. Каждый раз, когда имеется три или больше узлов, из числа которых нужно выбрать два, существуют альтернативные варианты результирующего дерева и, следовательно, результирующих кодов. Но на практике все эти возможные варианты деревьев и кодов будут обеспечивать максимальное сжатие. Все они эквивалентны.

Теперь можно вычислить код для всего предложения. Он начинается с битов:

1111110111100001110010100...

и содержит всего 131 бит. Если бы исходное предложение было закодировано кодами ASCII, по одному байту на символ, оно содержало бы 286 битов. Таким образом, в данном случае коэффициент сжатия составляет приблизительно 54%.

Повторим снова, что, как и при применении алгоритма Шеннона-Фано, необходимо каким-то образом сжать дерево и включить его в состав сжатых данных.

Восстановление выполняется совершенно так же, как при использовании кодирования Шеннона-Фано: необходимо восстановить дерево из данных, хранящихся в сжатом потоке, и затем воспользоваться им для считывания сжатого потока битов.

Рассмотрим кодирование Хаффмана с высокоуровневой точки зрения. В ходе реализации каждого из методов сжатия, которые будут описаны в этой главе, мы создадим простую подпрограмму, которая принимает как входной, так и выходной поток, и сжимает все данные входного потока и помещает их в выходной поток.

Эта высокоуровневая подпрограмма TDHuffroanCompress, выполняющая кодирование Хаффмана, приведена в листинге 11.5.

Листинг 11.5. Высокоуровневая подпрограмма кодирования Хаффмана

procedure TDHuffmanCompress(aInStream, aOutStream : TStream);

var

HTree : THuffmanTree;

HCodes : PHuffmanCodes;

BitStrm : TtdOutputBitStream;

Signature : longint;

Size : longint;

begin

{вывести информацию заголовка (сигнатуру и размер несжатых данных)}

Signature := TDHuffHeader;

aOutStream.WriteBuffer(Signature, sizeof(longint));

Size := aInStream.Size;

aOutStream.WriteBuffer(Size, sizeof(longint));

{при отсутствии данных для сжатия необходимо выйти из подпрограммы}

if (Size = 0) then

Exit;

{подготовка}

HTree := nil;

HCodes := nil;

BitStrm := nil;

try

{создать сжатый поток битов}

BitStrm := TtdOutputBitStream.Create(aOutStream);

BitStrm.Name := 'Huffman compressed stream';

{распределить память под дерево Хаффмана}

HTree := THuffmanTree.Create;

{определить распределение символов во входном потоке и выполнить восходящее построение дерева Хаффмана}

Поделиться:
Популярные книги

Возрождение Феникса. Том 2

Володин Григорий Григорьевич
2. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.92
рейтинг книги
Возрождение Феникса. Том 2

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Аномалия

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Аномалия

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Авиатор: назад в СССР 10

Дорин Михаил
10. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 10

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

Адепт. Том 1. Обучение

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
9.27
рейтинг книги
Адепт. Том 1. Обучение