Фундаментальные алгоритмы и структуры данных в Delphi
Шрифт:
Листинг 5.9. Сортировка методом Шелла при использовании последовательности Кнута
procedure TDShellSort(aList : TList;
aFirst : integer;
aLast : integer;
aCompare : TtdCompareFunc);
var
i, j : integer;
h : integer;
Temp : pointer;
Ninth : integer;
begin
TDValidateListRange(aList, aFirst, aLast, 'TDShellSort');
{прежде всего вычисляем начальное значение h; оно должно быть близко к одной девятой количества элементов в списке}
h := 1;
Ninth := (aLast - aFirst) div 9;
while (h<= Ninth) do h := (h * 3) + 1;
{начать
while (h > 0) do
begin
{выполнить сортировку методом вставки для каждого подмножества}
for i := (aFirst + h) to aLast do
begin
Temp := aList.List^[i];
j := i;
while (j >= (aFirst+h)) and
(aCompare(Temp, aList.List^[j-h]) < 0) do
begin
aList.List^[j] := aList.List^[j-h];
dec(j, h);
end;
aList.List^[j ] := Teilend;
{уменьшить значение h на треть}
h := h div 3;
end;
end;
Математические зависимости для анализа быстродействия сортировки методом Шелла достаточно сложны. В общем случае для оценки времени выполнения сортировки при различных значениях h приходится ограничиваться статистическими данными. Тем не менее, анализ быстродействия алгоритма Шелла практически не имеет смысла, поскольку существуют более быстрые алгоритмы.
Что касается устойчивости, то при перестановке элементов, далеко отстоящих друг от друга, возможно нарушение порядка следования элементов с равными значениями. Следовательно, сортировка методом Шелла относится к группе неустойчивых алгоритмов.
Сортировка методом прочесывания
Этот раздел будет посвящен действительно странному алгоритму сортировки -сортировке методом прочесывания (comb sort). Он не относится к стандартным алгоритмам. На сегодняшний день он малоизвестен и поиск информации по нему может не дать никаких результатов. Тем не менее, он отличается достаточно высоким уровнем быстродействия и удобной реализацией. Метод был разработан Стефаном Лейси (Stephan Lacey) и Ричардом Боксом (Richard Box) и опубликован в журнале "Byte" в апреле 1991 года. Фактически он использует пузырьковую сортировку таким же образом, как сортировка методом Шелла использует сортировку методом вставок.
Перетасуйте карты и снова разложите их на столе. Выделите первую и девятую карту. Если они находятся в неправильном порядке, поменяйте их местами. Выделите вторую и десятую карты и, при необходимости, поменяйте их местами. То же самое проделайте для третьей и одиннадцатой карты, четвертой и двенадцатой, а затем пятой и тринадцатой. Далее сравнивайте и переставляйте пары карт (1, 7), (2, 8), (3, 9), (4, 10), (5, 11), (6, 12) и (7, 13) (т.е. карты, отстоящие друг от друга на шесть позиций). А теперь выполните проход по колоде для карт, отстоящих друг от друга на четыре позиции, затем на три и две позиции. После этого выполните стандартную пузырьковую сортировку (которую можно рассматривать как продолжение предыдущего алгоритма для соседних карт).
Таким образом, вначале карты большими "прыжками" передвигаются в требуемую область. Как и сортировка методом Шелла, прочесывание неудобно выполнять на картах, но в функции для сортировки методом прочесывания требуется всего два цикла - один для уменьшения размера "прыжков", а второй - для выполнения разновидности пузырьковой сортировки.
Как были получены значения расстояний 8, 6, 4, 3, 2, 1? Разработчики этого метода сортировки провели большое количество экспериментов и эмпирическим путем пришли к выводу, что значение каждого последующего расстояния "прыжка" должно быть получено в результате деления предыдущего на 1.3. Этот "коэффициент уменьшения" был лучшим из рассмотренных и позволял сбалансировать зависимость времени выполнения от длины последовательности значений расстояний и времени выполнения пузырьковой сортировки.
Более того, создатели алгоритма пришли к необъяснимому выводу, что значения расстояний между сравниваемыми элементами 9 и 10 являются неоптимальными, т.е. если в последовательности расстояний присутствует значение 9 или 10, его лучше поменять на 11. В этом случае сортировка будет выполняться гораздо быстрее. Проведенные эксперименты подтверждают этот вывод. Теоретических исследований сортировки методом прочесывания на сегодняшний день не производилось, и поэтому нет определенного объяснения, почему приведенная последовательность расстояний является оптимальной.
Рисунок 5.7. Сортировка методом прочесывания (показаны только перестановки)
Листинг 5.10. Сортировка методом прочесывания
procedure TDCombSort(aList : TList;
aFirst : integer; aLast : integer;
aCompare : TtdCompareFunc);
var
i, j : integer;
Temp : pointer;
Done : boolean;
Gap : integer;
begin
TDValidateListRange(aList, aFirst, aLast, 'TDCombSort');
{начать с расстояния, равного количеству элементов}
Gap := succ(aLast - aFirst);
repeat
{предположить, что сортировка будет выполнена на этом проходе}
Done := true;
{calculate the new gap}
Gap := (longint(Gap) * 10) div 13;
{Gap := Trunc(Gap / 1.3);}
if (Gap < 1) then
Gap := 1
else
if (Gap = 9) or (Gap = 10) then
Gap := 11;
{упорядочить два элемента, отстоящих друг от друга на Gap элементов}
for i := aFirst to (aLast - Gap) do
begin
j := i + Gap;
if (aCompare(aList.List^[j], aList.List^[i]) < 0) then begin
{поменять местами элементы с индексами j и (j-Gap)}
Temp := aList.List^[j];
aList.List^[j] := aList.List^[i];
aList.List^[i] := Temp;
{была выполнена перестановка, следовательно, сортировка не завершена}
Done := false;
end;
end;
until Done and (Gap = 1);
end;
В экспериментах, проведенных автором книги, сортировка методом прочесывания была немного быстрее сортировки методом Шелла (на последовательности Кнута). Кроме того, ее легче запрограммировать (если не говорить о необходимости исключения расстояний 9 и 10). Очевидно, что сортировка методом прочесывания, как и методом Шелла, принадлежит к группе неустойчивых алгоритмов.