Чтение онлайн

на главную - закладки

Жанры

Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:

Ответ: тупоугольный.

2. Основание треугольника равно 6 см, один из углов при основании равен 105°, другой – 45°. Найдите длину стороны, лежащей против угла в 45° (рис. 127). (1)

Рис. 127.

Решение. Пусть в треугольнике ABC будут АС = 6 см, ?А = 45°, ?С = 105°. Обозначим длину стороны ВС через х. Её нам и нужно найти. Воспользуемся теоремой синусов по которой:

Учитывая, что сумма углов в треугольнике равна 180°, получим:?В = 180° – ?A – ?C = 180°– 45°– 105° = 30°.

Итого

Ответ:

3.

Найдите площадь треугольника со сторонами 2, ?5 и 3 (рис. 128). (1)

Рис. 128.

Решение. Можно воспользоваться формулой Герона:

В нашем случае:

Полупериметр:

Проще решить задачу можно было бы так. По теореме косинусов:

Так как площадь треугольника равна половине произведения двух сторон на синус угла между ними, то:

Ответ: ?5.

4. В треугольнике ABC, где ?ACB = 120°, проведена медиана СМ. Найдите ее длину, если АС = 6, ВС = 4 (рис. 129). (2)

Рис. 129.

Решение. Воспользуемся формулой длины медианы

У нас а = ВС = 4, b = АС = 6. Осталось найти с = АВ. Применим к треугольнику АСВ теорему косинусов: с2= АВ2= АС2+ ВС2– 2AC ? BC ? cos(?АСВ) = 62+ 42– 2 ? 6 ? 4 ? cos 120° = 36 + 16–48?(-1/2) = 76.

Ответ: ?7.

5. Найдите длины сторон АВ и АС остроугольного треугольника ABC, если ВС = 8, а длины высот, опущенных на стороны АС и ВС, равны 6, 4 и 4 соответственно (рис. 130). (2)

Рис. 130.

Решение. Единственный угол треугольника, который остался «нетронутым», угол С.

Из прямоугольного треугольника ВМС следует:

тогда

Из ?АКС:

А теперь по теореме косинусов, применённой к треугольнику ABC, получаем:

Ответ: AB = ?41; AC = 5.

6. В треугольнике, один из углов которого равен разности двух других, длина меньшей стороны равна 1, а сумма площадей квадратов, построенных на двух других сторонах, в два раза больше площади описанного около треугольника круга. Найти длину большей стороны треугольника (рис. 131). (2)

Рис. 131.

Решение:

Обозначим через ? наименьший угол в треугольнике и через ? наибольший угол. Тогда третий угол равен ? – ? – ?. По условию задачи ? – ? = ? – ? – ? (больший угол не может равняться разности двух других углов). Отсюда следует, что 2? = ?; ? = ?/2. Значит, треугольник прямоугольный. Катет ВС, лежащий против меньшего угла ?, равен по условию 1, значит, второй катет АВ равен ctg?, а гипотенуза АС равна 1/sin ?. Поэтому сумма площадей квадратов, построенных на гипотенузе и большем катете, равна:

Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, и её радиус равен:

а площадь равна:

Пользуясь условием задачи, имеем уравнение:

откуда

Длина большей стороны треугольника равна

Ответ:

7. Длины сторон а, b, с треугольника равны 2, 3 и 4. Найти расстояние между центрами описанной и вписанной окружностей. (2)

Решение. Для решения задачи даже чертеж не нужен. Последовательно находим: полупериметр

Расстояние между центрами окружностей:

Ответ:

8. В треугольнике ABC величина угла ВАС равна ?/3, длина высоты, опущенной из вершины С на сторону АВ, равна ?3 см, а радиус окружности, описанной около треугольника ABC, равен 5 см. Найти длины сторон треугольника ABC (рис. 132). (3)

Рис. 132.

Решение: Пусть CD – высота треугольника ABC, опущенная из вершины С. Возможны три случая. Основание D высоты CD попадает:

1) на отрезок АВ;

2) на продолжение отрезка АВ за точку В;

3) в точку В.

По условию радиус R окружности, описанной около треугольника ABC, равен 5 см. Следовательно, во всех трех случаях:

Теперь ясно, что точка D не совпадает с точкой В, так как ВС ? CD. Применяя теорему Пифагора к треугольникам ACD и BCD, находим, что

Отсюда следует, что точка D лежит между точками А и В, но тогда АВ = AD + BD (1 + 6?2) см.

Ответ: АВ = (6?2 + 1) см, ВС = 5?3 см, АС = 2 см.

9. В треугольниках ABC и A1B1C1 длина стороны АВ равна длине стороны А1В1, длина стороны АС равна длине стороны А1С1, величина угла ВАС равна 60° и величина угла В1А1С1 равна 120°. Известно, что отношение длины В1С1 к длине ВС равно ?n (где n – целое число). Найти отношение длины АВ к длине АС. При каких значениях n задача имеет хотя бы одно решение (рис. 133)? (3)

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Хроники Сиалы. Трилогия

Пехов Алексей Юрьевич
Хроники Сиалы
Фантастика:
фэнтези
9.03
рейтинг книги
Хроники Сиалы. Трилогия

Повелитель механического легиона. Том I

Лисицин Евгений
1. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том I

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Книга 5. Империя на марше

Тамбовский Сергей
5. Империя у края
Фантастика:
альтернативная история
5.00
рейтинг книги
Книга 5. Империя на марше

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4