Чтение онлайн

на главную - закладки

Жанры

Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:

Рис. 91.

АК = AT, где А – любая точка на биссектрисе.

Геометрическим местом точек, равноудалённых от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. 92).

Рис. 92.

MA = MB, где М – произвольная точка на серединном перпендикуляре отрезка АВ.

Геометрическим

местом точек плоскости, равноудалённых от заданной точки, будет окружность с центром в этой точке (рис. 93).

Рис. 93.

Точка О равноудалена от точек окружности.

Местоположение центра окружности, описанной около треугольника.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон (рис. 94).

Рис. 94.

А, В, С – вершины треугольника, лежащие на окружности.

АМ = МВ и АК = КС.

Точки М и К – основания перпендикуляров к сторонам АВ и АС соответственно.

Местоположение центра окружности, вписанной в треугольник.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис (рис. 95).

Рис. 95.

В ?ABC отрезки AT и СК являются биссектрисами.

7. Теоремы о четырёхугольниках

Свойства параллелограмма.

У параллелограмма противолежащие стороны равны. У параллелограмма противолежащие углы равны.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам (рис. 96).

Рис. 96.

АВ = CD, ВС = AD, ?BAD = ?BCD, ?АВС = ?ADC, AO = OC, BO = OD.

Признаки параллелограмма.

Если у четырёхугольника две стороны параллельны и равны, то он является параллелограммом (рис. 97).

Рис. 97.

ВС||AD, ВС = AD ? ABCD – параллелограмм.

Если диагонали четырёхугольника пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм (рис. 98).

Рис. 98.

АО = ОС, ВО = OD ? ABCD – параллелограмм.

Свойства прямоугольника.

Для прямоугольника характерны все свойства параллелограмма (у прямоугольника противолежащие стороны равны; у прямоугольника противолежащие углы равны (90°); диагонали прямоугольника пересекаются и точкой пересечения делятся пополам).

Диагонали прямоугольника равны (рис. 99):

АС = BD.

Рис. 99.

Признак прямоугольника.

Если у параллелограмма все углы равны, то он является прямоугольником.

Свойства ромба.

Для ромба характерны все свойства параллелограмма (у ромба противолежащие стороны равны – вообще все стороны по определению равны; у ромба противолежащие углы равны; диагонали ромба пересекаются и точкой пересечения делятся пополам).

Диагонали ромба пересекаются под прямым углом.

Диагонали ромба являются биссектрисами его углов (рис. 100).

Рис. 100.

AC ? BD, ?ABD = ?DВС = ?CDB = ?BDA, ?ВАС = ?CAD = ?ВСА = ?DCA.

Признак ромба.

Если у параллелограмма диагонали перпендикулярны, то он является ромбом.

Свойства квадрата.

Квадрат обладает свойствами прямоугольника и ромба.

Признак квадрата.

Если диагонали прямоугольника пересекаются под прямым углом, то он – квадрат.

Свойство средней линии трапеции.

Средняя линия трапеции параллельна основаниям и равна их полусумме (рис. 101).

Рис. 101.

Критерии вписанного и описанного четырехугольников.

Если около четырёхугольника можно описать окружность, то суммы его противоположных углов равны по 180° (рис. 102).

?А + ?С = ?В + ?D = 180°.

Рис. 102.

Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны (рис. 103).

AB + CD = AD + BC.

Рис. 103.

8. Теоремы об окружностях

Свойство хорд и секущих.

Если хорды АВ и CD окружности пересекаются в точке S, то AS ? BS = CS ? DS (рис. 104).

Рис. 104.

Если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS (рис. 105).

Рис. 105.

Число ?.

Отношение длины окружности к её диаметру не зависит от радиуса окружности, то есть оно одно и то же для любых двух окружностей. Это число равно ? (рис. 106).

Рис. 106.

Поделиться:
Популярные книги

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Заход. Солнцев. Книга XII

Скабер Артемий
12. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Заход. Солнцев. Книга XII

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить