Чтение онлайн

на главную - закладки

Жанры

Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:

а – серединный перпендикуляр к отрезку АВ (АО = ОВ).

Рис. 34.

Прямая, проходящая через точку окружности в той же плоскости перпендикулярно к радиусу, проведённому в эту точку, называется касательной. При этом данная точка окружности называется точкой касания (рис. 35).

Рис. 35.

а – касательная к окружности, А – точка касания,

а ? ОА.

Говорят, что две окружности, имеющие общую точку, касаются в этой точке, если они имеют в этой точке общую касательную. Касание окружностей называется внутренним, если центры окружностей лежат по одну сторону от их общей касательной. Касание окружностей называется внешним, если центры окружностей лежат по разные стороны от их общей касательной (рис. 36, а; б).

Рис. 36.

а – общая касательная к двум окружностям, К – точка касания.

Окружность называется вписанной в треугольник, если она касается всех его сторон (рис. 37).

Рис. 37.

Точки K, L, M – это точки касания окружности, вписанной в ?ABC. OK = OL = OM = r.

В задачах на построение речь идет о построении геометрической фигуры с помощью данных чертёжных инструментов. Такими инструментами чаще всего являются линейка и циркуль. Решение задачи состоит не столько в построении фигуры, сколько в решении вопроса о том, как это сделать, и соответствующем доказательстве. Задача считается решённой, если указан способ построения фигуры и доказано, что в результате выполнения указанных построений действительно получается фигура с требуемыми свойствами.

С помощью линейки, как инструмента геометрических построений, можно провести произвольную прямую; произвольную прямую, проходящую через данную точку; прямую, проходящую через две данные точки. Никаких других операций выполнить линейкой нельзя. В частности, нельзя откладывать линейкой отрезки, даже если на ней имеются деления.

Циркуль, как инструмент геометрических построений, позволяет описать из данного центра окружность определенного радиуса. Циркулем также можно отложить определенный отрезок на данной прямой от заданной точки.

Геометрическим местом точек называется фигура, которая состоит из всех точек плоскости, обладающих определённым свойством.

Например, окружность можно определить как геометрическое место точек плоскости, равноудалённых от данной точки.

Сущность метода геометрических мест, используемого при решении задач, состоит в следующем. Пусть, решая задачу, нам надо найти точку X, удовлетворяющую двум условиям. Геометрическое место точек, удовлетворяющих первому условию, есть некоторая фигура F1, а геометрическое место точек, удовлетворяющих второму условию, есть некоторая фигура F2. Искомая точка X принадлежит F1 и F2 т. е. является их точкой пересечения. Если эти геометрические места простые (скажем, состоят из прямых и окружностей), то мы можем их построить и найти интересующую нас точку X.

Ломаной А1А2А3...An называется фигура, которая состоит из точек А1, А2 ..., An и соединяющих их отрезков А1A2, A2A3, ..., An-1, Aп. ТочкиА1, А2..., Аn называются вершинами ломаной, а отрезки A142, A2A3 ..., An-1, An – звеньями ломаной. Ломаная называется простой, если она не имеет самопересечений (рис. 38).

Рис. 38.

А1A2A3A4 – простая ломаная из трёх звеньев.

Ломаная называется замкнутой, если у неё концы совпадают. Простая замкнутая ломаная называется многоугольником, если её соседние звенья не лежат на одной прямой. Вершины ломаной называются вершинами многоугольника, а звенья ломаной – сторонами многоугольника. Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями. Многоугольник с n-вершинами, а значит, и с n-сторонами называется n-угольником.

Плоским многоугольником и многоугольной областью называется конечная часть плоскости, ограниченная многоугольником.

Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону (рис. 39). Многоугольник называется невыпуклым, если он оказывается лежащим по обе стороны прямой, содержащей любую его сторону (рис. 40).

Рис. 39.

Рис. 40.

Выпуклый многоугольник называют правильным, если у него все стороны равны и все углы равны.

Многоугольник называется вписанным в окружность, если все его вершины лежат на некоторой окружности. Многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

Вершины многоугольника называются соседними, если они являются концами одной из его сторон. Вершины, не являющиеся соседними, называются противолежащими. Отрезки, соединяющие противолежащие вершины многоугольника, называются диагоналями.

Стороны многоугольника, исходящие из одной вершины, называются соседними сторонами. Стороны, не имеющие общего конца, называются противолежащими сторонами.

Параллелограмм – это четырёхугольник, у которого противолежащие стороны параллельны, т. е. лежат на параллельных прямых (рис. 41).

Рис. 41.

ABCD – параллелограмм, т. к. ВС||AD и АВ||CD.

Прямоугольник – это параллелограмм, у которого все углы прямые (рис. 42).

Рис. 42.

ABCD – прямоугольник, т. к. ?А = ?В = ?С = ?D = 90°.

Ромб – это параллелограмм, у которого все стороны равны (рис. 43).

Рис. 43.

ABCD – ромб, т. к. AD||ВС и АВ||DC и AB = BC = CD = AD.

Квадрат – это прямоугольник, у которого все стороны равны. Можно также сказать, что квадрат – это ромб, у которого все углы прямые (рис. 44).

< image l:href="#" />

Рис. 44.

ABCD – квадрат, т. к. ?А = ?В = ?С = ?D = 90° и АВ = ВС = CD = DA.

Трапецией называется четырёхугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами (рис. 45).

Рис. 45.

ABCD и А' В' С' D' – трапеции, т. к. BC||AD, BC||AD.

Поделиться:
Популярные книги

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Лапочки-дочки из прошлого. Исцели мое сердце

Лесневская Вероника
2. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Лапочки-дочки из прошлого. Исцели мое сердце