Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:
б) Докажите эти свойства и признаки. (1)
18. а) Какие вы знаете свойства и признаки ромба? (1)
б) Докажите эти свойства и признаки. (1)
19. а) Какие вы знаете свойства и признаки квадрата? (1)
б) Докажите эти свойства и признаки. (1)
20. а) Сформулируйте теорему Фалеса. (1)
б) Докажите эту теорему. (1)
21. а) Сформулируйте обобщенную теорему Фалеса (теорему о пропорциональных отрезках). (1)
б) Докажите эту теорему. (2)
22.
б) Докажите эти свойства. (1)
23. а) Какие вы знаете свойства средней линии трапеции? (1)
б) Докажите эти свойства. (1)
24. а) Сформулируйте теорему Пифагора. (1)
б) Докажите теорему Пифагора. (1)
в) Сформулируйте и докажите обратную теорему. (2)
25. Докажите, что любая наклонная больше перпендикуляра, и что из двух наклонных больше та, у которой больше проекция. (1)
26. а) Сформулируйте неравенство треугольника. (1)
б) Докажите неравенство треугольника. (2)
27. Даны координаты точек A(х1; у1) и В(х2; у2).
а) По какой формуле вычисляется длина отрезка AB? (1)
б) Выведите эту формулу. (1)
28. Выведите уравнение окружности с центром в точке А(х0; у0) и радиусом R. (1)
29. Докажите, что любая прямая в декартовых координатах х, у имеет уравнение вида ах + by + с = 0. (2)
30. Напишите уравнение прямой, проходящей через точки А(х1; у1) и В(х2; у2). Ответ: обоснуйте. (2)
31. Докажите, что в уравнении прямой у = kx + b число k есть тангенс угла наклона прямой к положительному направлению оси абсцисс. (2)
32. а) Какие вы знаете основные свойства движений? (2)
б) Докажите эти свойства. (3)
33. Докажите, что:
а) преобразование симметрии относительно точки является движением; (3)
б) преобразование симметрии относительно прямой является движением; (3)
в) параллельный перенос есть движение. (3)
34. Докажите теорему о существовании и единственности параллельного переноса. (3)
35. Докажите, что абсолютная величина вектора kа равна |к| ? |а|, при этом направление вектора kа при а ? О совпадает с направлением вектора а, если k > 0, и противоположно направлению вектора а, если к < 0. (1)
36. Докажите, что любой вектор а можно разложить по векторам b и с (все три вектора лежат на одной плоскости). (1)
37. Даны векторы а = (а1; а2) и b = (BL; b2). Докажите, что
где ? – угол между векторами.
38. а) Какие вы знаете свойства скалярного произведения векторов? (1)
б) Докажите эти свойства. (2)
39. Докажите, что гомотетия есть преобразование подобия. (1)
40. а) Какие вы знаете свойства преобразования подобия? (1)
б) Докажите, что преобразование подобия сохраняет углы между лучами. (2)
41. а) Сформулируйте признак подобия треугольников по двум углам. (1)
б) Докажите этот признак. (1)
42. а) Сформулируйте признак подобия треугольников по двум сторонам и углу между ними. (1)
б) Докажите этот признак. (1)
43. а) Сформулируйте признак подобия треугольников по трём сторонам. (1)
б) Докажите этот признак. (2)
44. а) Сформулируйте свойство биссектрисы треугольника. (1)
б) Докажите, что биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (1)
45. а) Сформулируйте свойство вписанного в окружность угла. (1)
б) Докажите это свойство. (1)
46. а) Докажите, что если хорды АВ и CD окружности пересекаются в точке S, то AS ? BS = CS ? DS. (1)
б) Докажите, что если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS. (1)
47. а) Сформулируйте теорему косинусов для треугольника. (1)
б) Докажите эту теорему. (1)
48. а) Сформулируйте теорему синусов. (1)
б) Докажите эту теорему. (1)
в) Докажите, что в теореме синусов каждое из трёх отношений:
равно 2R, где R – радиус описанной около треугольника окружности. (1)
49. Докажите, что в треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона. (2)
50. а) Чему равна сумма углов выпуклого n-угольника? (1)
б) Выведите формулу суммы углов выпуклого n-угольника. (1)
51. а) Докажите, что в правильный многоугольник можно вписать окружность. (1)
б) Докажите, что около правильного многоугольника можно описать окружность. (1)
52. Дан правильный n-угольник со стороной а. Выведите формулы:
а) радиусов вписанной и описанной окружностей; (1)
б) площади n-угольника; (1)
в) угла при вершине. (1)
53. Докажите, что отношение длины окружности к её диаметру не зависит от размера окружности. (3)