Гидравлика
Шрифт:
У разных исследователей к этому вопросу были разные подходы. Среди них немецкий ученый Л. Прандтль, советский ученый Л. Ландау и многие другие.
Если до начала XX в. ламинарный слой, по мнению ученых, представлял собой некоторый мертвый слой, в переходе к которому (или от которого) происходит как бы разрыв скоростей, то есть скорость меняется скачкообразно, то в современной гидравлике совсем другая точка зрения.
Поток – это «живое» явление: все переходные процессы в нем носят непрерывный характер.
40. Распределение скоростей в «живом» сечении потока
Современной гидродинамике удалось разрешить эти проблемы, применив
Усредненная скорость
Ясно, что в любой точке живого сечения любую мгновенную скорость и можно разложить на ux, uy, uz компоненты.
Мгновенная скорость определяется по формуле:
Полученную скорость можно назвать скоростью, усредненной по времени, или средней местной эта скорость ux – фиктивно постоянная и позволяет судить о характеристике потока.
Вычислив uy,ux можно получить вектор усредненной скорости
Касательные напряжения = + ,
определим и суммарное значение касательного напряжения . Поскольку это напряжение возникает из-за наличия сил внутреннего трения, то жидкость считают ньютоновой.
Если предположить, что площадь соприкосновения – единичная, то сила сопротивления
где – динамическая вязкость жидкости;
d/dy – изменение скорости. Эту величину часто называют градиентом скорости, или скоростью сдвига.
В настоящее время руководствуются выражением, полученным в вышеупомянутом уравнении Прандтля:
где – плотность жидкости;
l– длина пути, на котором рассматривается движение.
Без вывода приводим окончательную формулу для пульсационной «добавки» касательного напряжения:
42. Параметры потока, от которых зависит потеря напора. Метод размерностей
Неизвестный вид зависимости определяется по методу размерностей. Для этого существует -теорема: если некоторая физическая закономерность выражена уравнением, содержащим к размерных величин, причем оно содержит п величин с независимой размерностью, то это уравнение может быть преобразовано в уравнение, содержащее (к-п) независимых, но уже безразмерных комплексов.
Для чего определимся: от чего зависят потери напора при установившемся движении в поле сил тяжести.
Эти параметры.
1. Геометрические размеры потока:
1) характерные размеры живого сечения l1l2;
2) длина рассматриваемого участка l;
3) углы, которыми завершается живое сечение;
4) свойства
2. Физические свойства:
1) – плотность;
2) – динамическая вязкость жидкости;
3) – сила поверхностного натяжения;
4) Еж – модуль упругости.
3. Степень интенсивности турбулентности, характеристикой которой является среднеквадратичное значение пульсационных составляющих u.
Теперь применим -теорему.
Исходя из приведенных выше параметров, у нас набирается 10 различных величин:
l, l2, , l, p, , , Eж,u, t.
Кроме этих, имеем еще три независимых параметра: l1, , . Добавим еще ускорение падения g.
Всего имеем к = 14 размерных величин, три из которых независимы.
Требуется получить (ккп) безразмерных комплексов, или, как их называют -членов.
Для этого любой параметр из 11, который не входил бы в состав независимых параметров (в данном случае l1, , ), обозначим как Ni, теперь можно определить безразмерный комплекс, который является характеристикой этого параметра Ni, то есть i-тый -член:
Здесь углы размерности базовых величин:
общий вид зависимости для всех 14 параметров имеет вид:
43. Равномерное движение и коэффициент сопротивления по длине. Формула Шези. Средняя скорость и расход потока
При ламинарном движении (если оно равномерное) ни живое сечение, ни средняя скорость, ни эпюра скоростей по длине не меняются со временем.
При равномерном движении пьезометрический уклон
где l1– длина потока;
hl– потери напора на длине L;
rd – соответственно радиус и диаметр трубы.
В формуле (2) безразмерный коэффициент называют коэффициентом гидравлического трения или коэффициентом Дарси.
Если в (2) d заменить на гидравлический радиус, то следует
Введем обозначение
тогда с учетом того, что