Гидравлика
Шрифт:
Получили уравнение движения параллелепипеда с dV1 по направлению оси Х.
Делим (1) на массу dxdydz:
Полученная система уравнений (2) есть искомое уравнение движения невязкой жидкости – уравнение Эйлера.
К трем уравнениям (2) добавляются еще два уравнения, поскольку неизвестных пять, и решается система из пяти уравнений
Уравнение состояния должно быть выбрано таким образом, чтобы оно содержало хотя бы одно из пяти неизвестных.
23. Уравнение Эйлера для разных состояний
Уравнение Эйлера для разных состояний имеет разные формы записи. Поскольку само уравнение получено для общего случая, то рассмотрим несколько случаев:
1) движение неустановившееся.
2) жидкость в покое. Следовательно, Ux = Uy = Uz = 0.
В таком случае уравнение Эйлера превращается в уравнение равномерной жидкости. Это уравнение также дифференциальное и является системой из трех уравнений;
3) жидкость невязкая. Для такой жидкости уравнение движения имеет вид
где Fl – проекция плотности распределения сил массы на направление, по которому направлена касательная к линии тока;
dU/dt – ускорение частицы
Подставив U = dl/dt в (2) и учтя, что (U/l)U = 1/2(U2/l), получим уравнение.
Мы привели три формы уравнения Эйлера для трех частных случаев. Но это не предел. Главное – правильно определить уравнение состояния, которое содержало хотя бы один неизвестный параметр.
Уравнение Эйлера в сочетании с уравнением неразрывности может быть применено для любого случая.
Уравнение состояния в общем виде:
Таким образом, для решения многих гидродинамических задач оказывается достаточно уравнения Эйлера, уравнения неразрывности и уравнения состояния.
С помощью пяти уравнений легко находятся пять неизвестных: p, Ux, Uy, Uz, .
Невязкую жидкость можно описать и другим уравнением
24. Форма Громеки уравнения движения невязкой жидкости
Уравнения Громеки – попросту другая, несколько преобразованная форма записи уравнения Эйлера.
Например, для координаты x
Чтобы его преобразовать, используют уравнения компонентов угловой скорости для вихревого движения.
Преобразовав точно так же y-вую и z-вую компоненту, окончательно приходим к форме Громеко уравнения Эйлера
Уравнение Эйлера было получено российским ученым Л. Эйлером в 1755 г., и преобразовано в вид (2) опять же российским ученым И. С. Громекой в 1881 г
Уравнение Громеко (под воздействием массовых сил на жидкость):
Поскольку
– dП = Fxdx + Fydy + Fzdz, (4)
то
25. Уравнение Бернулли
Уравнение Громеки подходит для описания движения жидкости, если компоненты функции движения содержат какуююто вихревую величину. Например, эта вихревая величина содержится в компонентах x, y,z угловой скорости w.
Условием того, что движение является установившимся, является отсутствие ускорения, то есть условие равенства нулю частных производных от всех компонентов скорости:
Если теперь сложить
то получим
Если проецировать перемещение на бесконечно малую величину dl на координатные оси, то получим:
dx = Uxdt; dy = Uy dt; dz = Uzdt. (3)
Теперь помножим каждое уравнение (3) соответственно на dx, dy, dz, и сложим их:
Предположив, что правая часть равна нулю, а это возможно, если вторая или третья строки равны нулю, получим:
Нами получено уравнение Бернулли
26. Анализ уравнения Бернулли
это уравнение есть не что иное, как уравнение линии тока при установившемся движении.
Отсюда следуют выводы:
1) если движение установившееся, то первая и третья строки в уравнении Бернулли пропорциональны.
2) пропорциональны строки 1 и 2, т. е.
Уравнение (2) является уравнением вихревой линии. Выводы из (2) аналогичны выводам из (1), только линии тока заменяют вихревые линии. Одним словом, в этом случае условие (2) выполняется для вихревых линий;
3) пропорциональны соответствующие члены строк 2 и 3, т. е.
где а – некоторая постоянная величина; если подставить (3) в (2), то получим уравнение линий тока (1), поскольку из (3) следует:
x= aUx; y= aUy; z= aUz. (4)
Здесь следует интересный вывод о том, что векторы линейной скорости и угловой скорости сонаправлены, то есть параллельны.
В более широком понимании надо представить себе следующее: так как рассматриваемое движение установившееся, то получается, что частицы жидкости движутся по спирали и их траектории по спирали образуют линии тока. Следовательно, линии тока и траектории частиц – одно и то же. Движение такого рода называют винтовым.