Чтение онлайн

на главную

Жанры

Шрифт:
empty-line />

гидравлический уклон

Эту формулу называют формулой Шези.

называется коэффициентом Шези.

Если коэффициент Дарси – величина безразмерр

ная, то коэффициент Шези с имеет размерность

Определимся с расходом потока с участием коэфф

фициента Шези:

Преобразуем

формулу Шези в следующий вид:

Величину

называют динамической скоростью

44. Гидравлическое подобие

Понятие о подобии. Гидродинамическое моделирование

Для исследования вопросов сооружения гидроэлектростанций применяют метод гидравлических подобий, суть которого состоит в том, что в лабораторных условиях моделируются точно такие же условия, что и в натуре. Это явление называют физическим моделированием.

Например, чтобы два потока были подобными, требуется их:

1) геометрическое подобие, когда

где индексы н, м соответственно означают «натура» и «модель».

Однако, отношение

что значит, относительная шероховатость в модели такая же, как и в натуре;

2) кинематическое подобие, когда траектории соответствующих частиц, соответствующие линии тока подобны. Кроме того, если соответствующие части прошли подобные расстояния lн, lм, то отношение соответствующих времен движения выглядит следующим образом

где Mi – масштаб времени

Такое же сходство имеется для скорости (масштаб скорости)

и ускорения (масштаб ускорения)

3) динамическое подобие, когда требуется, чтобы соответствующие силы были подобными, например, масштаб сил

Таким образом, если потоки жидкости механически подобны, то они подобны гидравлически; коэффициенты Ml, Mt, M, Mp и прочие называются масштабными множителями.

45. Критерии гидродинамического подобия

Условия гидродинамического подобия требуют равенства всех сил, но это практически не удается.

По этой причине, подобие устанавливают по какой-нибудь из этих сил, которая в данном случае преобладает. Кроме того, требуется выполнение условий однозначности, которые включают в себя пограничные условия потока, основные физические характеристики и начальные условия.

Рассмотрим частный случай.

Преобладает влияние сил тяжести, например, при течении через отверстия или водосливы

P = gW. (1)

Если перейти к взаимоотношению Pн и Pм и выразить его в масштабных множителях, то

После необходимого

преобразования, следует

Если теперь совершить переход от масштабных множителей к самим отношениям, то с учетом того, что l – характерный размер живого сечения, то

В (4) комплекс 2/gl называется критерием Фруди, который формулируется так: потоки, в которых преобладают силы тяжести, геометрически подобны, если

Это второе условие гидродинамического подобия.

Нами получены три критерия гидродинамического подобия

1. Критерий Ньютона (общие критерии).

2. Критерий Фруда.

3. Критерий Дарси.

Отметим только: в частных случаях гидродинамическое подобие может быть установлено также по

где – абсолютная шероховатость;

R– гидравлический радиус;

J– гидравлический уклон

46. Распределение касательных напряжений при равномерном движении

При равномерном движении потеря напора на длине lhe определяется:

где – смоченный периметр,

w – площадь живого сечения,

lhe – длина пути потока,

, g – плотность жидкости и ускорение силы тяжести,

– касательное напряжение вблизи внутренних стенок трубы.

Следует:

Откуда с учетом

Исходя из полученных результатов для , распределения касательного напряжения в произвольно выбранной точке выделенного объема, например, в точке r– r = t это расстояние равно:

тем самым вводим касательное напряжение t на поверхности цилиндра, действующее на точку в r– r= t.

Из сравнений (4) и (3) следует:

поэтому

Подставив r= r– t в (5), получим

Выводы:

1) при равномерном движении распределение касательного напряжения по радиусу трубы подчиняется линейному закону;

2) на стенке трубы касательное напряжение максимально (когда r= r, т. е. t = 0), на оси трубы оно равно нулю (когда r= t).

R– гидравлический радиус трубы, получим, что

47. Турбулентный равномерный режим движения потока

Если рассмотреть плоское движение (т. е. потенциальное движение, когда траектории всех частиц параллельны одной и той же плоскости и являются функции ей двух координат и если движение неустановившееся), одновременно являющееся равномерным турбулентным в системе координат XYZ, когда линии тока параллельны оси OX, то

Поделиться:
Популярные книги

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс

Неудержимый. Книга XXII

Боярский Андрей
22. Неудержимый
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXII

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Лекарь

Первухин Андрей Евгеньевич
1. Лекарь
Фантастика:
фэнтези
попаданцы
альтернативная история
7.50
рейтинг книги
Лекарь

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия