Гиперпространство
Шрифт:
15 = 10 + 4 +1
оставшийся компонент — скалярная частица, не играющая роли в нашей дискуссии). При тщательном анализе полной пятимерной теории обнаруживается, что поле Максвелла прекрасно встраивается в метрический тензор Римана, как и утверждал Калуца. Таким образом, элементарное с виду уравнение является выражением одной из наиболее основополагающих идей века.
Словом, пятимерный метрический тензор содержит и поле Максвелла, и метрический тензор Эйнштейна. Эйнштейну не верилось, что такая простая идея способна дать объяснение двум наиболее фундаментальным силам природы — гравитации и свету.
Что же это — салонный фокус? Чудеса нумерологии? Или черная магия? Эйнштейн, глубоко потрясенный письмом Калуцы, поначалу не хотел отвечать на него. Над этим письмом он размышлял два года — на редкость длинный срок для решения вопроса о публикации важной статьи. Наконец, убедившись в ее потенциальной значимости, Эйнштейн представил статью для публикации в числе трудов Прусской академии наук. Статья имела внушительный
В истории физики еще никому не удавалось найти хоть какое-нибудь применение четвертому измерению. Со времен Римана было известно, что математика многомерности поразительно красива, но для физики совершенно бесполезна.
И вот теперь впервые применение четвертому пространственному измерению было найдено, да еще для объединения законов физики! В каком-то смысле Калуца указывал, что четыре измерения Эйнштейна «слишком тесны», чтобы вместить и электромагнитные, и гравитационные силы.
Теперь-то мы видим, что в историческом плане работа Калуцы не была полной неожиданностью. Большинство историков науки, упоминая о трудах Калуцы, заявляют, что идея пятого измерения стала громом среди ясного неба, оказалась абсолютно неожиданной и оригинальной. Физическим исследованиям свойственна преемственность, и эти историки всполошились, обнаружив, что новая научная область для исследований открылась без каких-либо исторических прецедентов. Но их изумление, вероятно, вызвано тем, что они не знакомы с ненаучными трудами мистиков, литераторов, авангардистов. Пристальное рассмотрение культурно-исторических условий указывает на то, что не стоит считать появление труда Калуцы полной неожиданностью. Как мы уже убедились, благодаря Хинтону, Цёлльнеру и другим вероятность существования высших измерений была, по-видимому, наиболее популярной квазинаучной идеей, витающей в мире искусства. Если рассматривать ее в более широком культурном контексте, серьезное отношение кого-нибудь из физиков к общеизвестной идее Хинтона, согласно которой свет — колебания четвертого измерения, было лишь вопросом времени. В некотором смысле работа Римана оплодотворила мир искусств и литературы с помощью Хинтона и Цёлльнера, а затем, вероятно, произошло обратное опыление мира науки посредством труда Калуцы. (В поддержку этой гипотезы: недавно Фройнд обнаружил, что Калуца предложил пятимерную теорию гравитации не первым. Гуннар Нордстрём, соперник Эйнштейна, опубликовал первую работу, посвященную пятимерной теории поля, однако она была слишком примитивной, чтобы содержать теории Эйнштейна и Максвелла. Тот факт, что и Калуца, и Нордстрём независимо друг от друга обратились к пятому измерению, указывает, что идеи, витающие в мире популярной культуры, повлияли на их мышление [49] .)
49
В 1914 г., еще до того, как Эйнштейн выдвинул общую теорию относительности, физик Гуннар Нордстрём пытался объединить электромагнетизм с гравитацией, обращаясь к пятимерной теории Максвелла. При изучении теории Нордстрёма выясняется, что она правомерно содержит максвелловскую теорию света в четырех измерениях и вместе с тем скалярную теорию гравитации, ошибочность которой известна. В итоге идеи Нордстрёма оказались в целом забытыми. В некотором смысле его публикация была преждевременной. Он написал статью за один год до обнародования теории гравитации Эйнштейна, поэтому никак не мог записать пятимерную теорию гравитации по примеру Эйнштейна.
В отличие от теории Нордстрёма теория Калуцы началась с метрического тензора g ,определенного в пятимерном пространстве. Затем Калуца отождествил g 5с максвелловским тензором A.Прежний четырехмерный метрический тензор Эйнштейна отождествлялся при этом с новым метрическим тензором Калуцы, но только при и ,не равных пяти. Таким простым и элегантным способом поле Эйнштейна и поле Максвелла было помещено в пятимерный метрический тензор Калуцы.
Кроме того, пятимерные теории выдвинули, по-видимому, Генрих Мандель и Густав Ми. Таким образом, высшие измерения занимали заметное место в популярной культуре, что, вероятно, и способствовало перекрестному опылению ими мира физики. В этом смысле труд Римана описал полный круг и вернулся в исходную точку.
Пятое измерение
Для каждого физика первая встреча с пятым измерением становится чем-то вроде удара. Питер Фройнд хорошо помнит тот момент, когда он познакомился с пятым и другими высшими измерениями. Это событие произвело на него глубокое и неизгладимое впечатление.
Оно произошло в 1953 г. в Румынии, где родился Фройнд. Смерть Иосифа Сталина снизила напряженность в обществе. В тот год Фройнд, одаренный ученик колледжа, присутствовал на лекции румынского математика Георге Врэнчану. Фройнд отчетливо вспоминает, как Врэнчану отвечал на важный вопрос: почему свет и гравитация несовместимы друг с другом? Затем лектор упомянул давнюю теорию, содержащую и теорию света, и уравнения гравитации Эйнштейна. Ее секрет заключался в применении теории Калуцы-Клейна, сформулированной для пяти измерений.
Фройнд был потрясен: эта блестящая мысль застигла его врасплох. Он только начинал
Лектор не нашелся с ответом. В порыве молодого энтузиазма Фройнд выпалил: «А если добавить еще измерений?»
«Тогда сколько?» — парировал лектор.
Фройнд растерялся. Ему не хотелось ошибиться в меньшую сторону и уступить победу кому-то другому. Поэтому он на всякий случай назвал бесконечное количество измерений! [50] (К сожалению, этому не по годам бойкому физику бесконечное множество измерений не казалось физически возможным.)
50
Питер Фройнд, в беседе с автором, 1990 г.
Жизнь на цилиндре
Оправившись от первого шока при столкновении с пятым измерением, большинство физиков начинают задаваться вопросами. Вообще-то теория Калуцы вызывает больше вопросов, чем дает ответов. Очевидный вопрос к автору теории звучит так: где оно, это пятое измерение? Поскольку все проведенные на Земле эксперименты убедительно доказали, что мы живем во Вселенной с тремя пространственными измерениями и одним временным, щекотливый вопрос остается открытым.
У Калуцы был заготовлен продуманный ответ. Предложенное им решение было точно таким же, как и найденное Хинтоном за много лет до того: высшее измерение, не наблюдаемое в ходе экспериментов, отличается от других измерений. По сути дела, оно сжато в круг — настолько маленький, что в нем не помещаются даже атомы. Таким образом, пятое измерение — не математический фокус, введенный с целью манипуляций электромагнетизмом и гравитацией, а физическое измерение, благодаря которому можно объединить две фундаментальные силы в одну, но при этом такое измерение слишком мало, чтобы количественно оценить его.
Каждый, кто движется в направлении пятого измерения, рано или поздно вернется в отправную точку. Это происходит потому, что топологически пятое измерение идентично кругу, а Вселенная — цилиндру.
Фройнд объясняет это так.
Представьте себе воображаемый народ, живущий в Лайнландии — стране, состоящей из прямой линии. На протяжении всей своей истории этот народ верил, что его мир — всего лишь прямая линия. А потом кто-то из местных ученых предположил, что Лайнландия — не одномерная линия, а двумерный мир. Когда же его спросили, где находится таинственное и незримое второе измерение, он ответил, что оно сжато в шарик. Таким образом, лайнландцы в действительности живут на поверхности длинного, но очень тонкого цилиндра. Радиус этого цилиндра слишком мал, чтобы его измерить; в сущности, он настолько мал, что этот мир кажется просто линией [51] .
51
Питер Фройнд, в беседе с автором, 1990 г.
Будь радиус цилиндра больше, лайнландцы могли бы выходить за пределы своей Вселенной и перемещаться перпендикулярно линейному миру. Иначе говоря, они могли бы совершать межпространственные путешествия. Передвигаясь перпендикулярно Лайнландии, ее жители сталкивались бы с бесконечным множеством параллельных линейных миров, сосуществующих с их Вселенной. Углубляясь во второе измерение, они в конце концов вернулись бы в свой линейный мир.
Теперь представим себе флатландцев, живущих на плоскости. Какой-нибудь флатландский ученый вполне мог бы высказать неслыханное предположение о возможности путешествий в третьем измерении. В принципе, флатландец способен покинуть поверхность Флатландии. Медленно уплывая вверх, в третье измерение, он заметил бы диковинную последовательность параллельных вселенных, сосуществующих с его миром. Поскольку его глаза способны видеть только поверхности, параллельные Флатландии, он наблюдал бы разные варианты все той же Флатландии. Если бы флатландец поднялся слишком высоко над плоскостью, в конце концов он мог бы вернуться в исходную Флатландию.
А теперь представим, что в нашем трехмерном мире на самом деле есть еще одно измерение, свернутое в круг. Предположим далее, что длина этого пятого измерения — 10 футов (3 м). Перескочив в пятое измерение, мы просто вмиг исчезнем из нашей нынешней Вселенной. Как только мы попадем в пятое измерение, то обнаружим, что нам достаточно проделать путь длиной 10 футов, чтобы вернуться в исходную точку. Но почему пятое измерение изначально свернуто в круг? В 1926 г. шведский математик Оскар Клейн внес несколько поправок в теорию, утверждая, что квантовая теория способна объяснить причины скрученности пятого измерения. Основываясь на этом предположении, он подсчитал, что размер пятого измерения должен составлять 10 – 33 см (планковская длина), т. е. что оно слишком мало для выявления его присутствия в лабораторных условиях на Земле. (Тот же довод применяется по сей день в подтверждение теории десяти измерений.)