Голая статистика. Самая интересная книга о самой скучной науке
Шрифт:
Компании, выпускающие кредитные карточки, находятся на переднем крае такого анализа, поскольку они знают наши личные данные и покупательские привычки, а их модель ведения бизнеса сильно зависит от умения находить клиентов, кредитный риск (то есть риск неплатежа) которых сравнительно невелик. (Идеальные клиенты с точки зрения кредитного риска, как правило, расточительны, так как каждый месяц полностью оплачивают свои счета; клиенты, располагающие крупными балансами с высокими процентными ставками, генерируют солидные прибыли – пока не окажутся неплатежеспособными.) Одно из самых интересных исследований того, кто, скорее всего, оплатит счет, а кто нет, было выполнено Дж. П. Мартином, любителем математики и одним из сотрудников компании Canadian Tire, крупной сети розничной торговли, специализирующейся
40
Charles Duhigg, What Does Your Credit Card Company Know about You? New York Times Magazine, May 12, 2009.
Статья в The New York Times, озаглавленная «Что знает о вас компания, выпустившая вашу кредитную карточку?», содержала описание некоторых из самых интересных выводов Мартина: «Люди, которые покупают дешевые непатентованные моторные масла, с гораздо большей вероятностью уклонятся от платежей по кредитным карточкам, чем те, кто предпочитает дорогостоящие фирменные товары. Те, кто покупает датчики угарного газа для дома или мягкие войлочные подкладки для ножек стульев и табуреток, чтобы не царапать пол в комнате, почти никогда не увиливают от платежей. Практически каждый, кто купил какой-либо из дешевых автомобильных аксессуаров, впоследствии с большой долей вероятности не оплатит свой счет».
Теория вероятностей предоставляет нам инструменты для борьбы с неопределенностями жизни. Не стоит играть в лотерею. Но имеет смысл инвестировать в рынок ценных бумаг, если у вас длинный инвестиционный горизонт (поскольку доход от акций, как правило, достигает своих максимальных значений в долгосрочном периоде). Что же касается страхования, то здесь все зависит от того, что именно вы собираетесь застраховать. Учет фактора вероятности может даже помочь вам увеличить выигрыши в игровых шоу (я попытаюсь продемонстрировать это в следующей главе).
С учетом вышесказанного (точнее говоря, написанного) концепция вероятности не является детерминистской. Да, от покупки лотерейных билетов следует воздержаться – тем не менее, купив лотерейный билет, вы можете выиграть деньги. Да, теория вероятностей может помочь нам поймать мошенников и уголовных преступников, но в случае ее неаккуратного использования за решеткой могут оказаться ни в чем не повинные люди. Все эти вопросы мы обсудим в главе 6.
5 1/2 . Загадка Монти Холла
«Загадка Монти Холла» – знаменитая задача по теории вероятностей, поставившая в тупик участников игрового шоу под названием Let’s Make a Deal («Совершим сделку»), до сих пор популярного в ряде стран, премьера которого состоялась в Соединенных Штатах в 1963 году. (Помню, я всякий раз смотрел это шоу в детстве, когда не ходил в школу по причине болезни.) Во введении к книге я уже указывал, что в этом игровом шоу может быть интересно для статистиков. В конце каждого его выпуска участник, добравшийся до финала, становился вместе с Монти Холлом перед тремя большими дверями: Дверью № 1, Дверью № 2 и Дверью № 3. Монти Холл объяснял финалисту, что за одной из этих дверей скрывается очень ценный приз – например новый автомобиль, а за двумя другими – козел. Финалист должен был выбрать одну из дверей и получить то, что за ней находилось. (Я не знаю, был ли среди участников шоу хотя бы один человек, желающий получить козла, но для простоты рассуждений будем полагать, что подавляющее большинство участников мечтали о новом автомобиле.)
Начальную вероятность выигрыша определить довольно просто. Есть три двери, за двумя скрывается козел, а за третьей – автомобиль. Когда участник
Допустим, ради примера, что участник указал на Дверь № 1. Затем Монти Холл открыл Дверь № 3, за которой скрывался козел. Две двери, Дверь № 1 и Дверь № 2, по-прежнему остаются закрытыми. Если бы ценный приз находился за Дверью № 1, финалист выиграл бы его, а если за Дверью № 2, то проиграл бы. Именно в этот момент Монти Холл обращается к игроку с вопросом, не желает ли он изменить свой первоначальный выбор (в данном случае отказаться от Двери № 1 в пользу Двери № 2). Вы, конечно, помните, что обе двери пока закрыты. Единственная новая информация, которую участник получил, состоит в том, что козел оказался за одной из двух дверей, которые он не выбрал.
Следует ли финалисту отказаться от первоначального выбора в пользу Двери № 2?
Отвечаю: да, следует. Если он будет придерживаться первоначального выбора, то вероятность выигрыша им ценного приза составит 1/3 ; если же передумает и укажет на Дверь № 2, то вероятность выигрыша ценного приза будет 2/3 . Если не верите мне, читайте дальше.
Признаю, что такой ответ на первый взгляд далеко не очевиден. Кажется, что, какую бы из оставшихся двух дверей ни выбрал финалист, вероятность получения ценного приза в обоих случаях равняется 1/3 . Есть три закрытые двери. Поначалу вероятность того, что ценный приз скрывается за любой из них, составляет 1/3 . Разве имеет какое-то значение решение финалиста поменять свой выбор в пользу другой закрытой двери?
Безусловно, поскольку закавыка заключается в том, что Монти Холл знает, что находится за каждой дверью. Если финалист выберет Дверь № 1 и за ней действительно будет автомобиль, то Монти Холл может открыть либо Дверь № 2, либо Дверь № 3, чтобы продемонстрировать козла, скрывающегося за ней.
Если финалист выберет Дверь № 1, а автомобиль будет за Дверью № 2, то Монти Холл откроет Дверь № 3.
Если же финалист укажет на Дверь № 1, а автомобиль окажется за Дверью № 3, то Монти Холл откроет Дверь № 2.
Изменив свое решение после того, как ведущий откроет какую-то из дверей, финалист получает преимущество выбора двух дверей вместо одной. Я попытаюсь убедить вас в правильности этого анализа тремя разными способами.
Первый – эмпирический. В 2008 году колумнист газеты The New York Times Джон Тайерни написал материал о «феномене Монти Холла» {41} . После этого сотрудники издания разработали интерактивную программу, которая позволяет вам сыграть в эту игру и самостоятельно принять решение, менять свой первоначальный выбор или нет. (В программе даже предусмотрены маленькие козлики и автомобильчики, которые появляются из-за дверей.) Программа фиксирует ваши выигрыши в случае, когда вы меняете свой первоначальный выбор, и в случае, когда остаетесь при своем мнении. Поэкспериментируйте сами [29] . Я заплатил одной из своих дочерей за то, чтобы она сыграла в эту игру 100 раз, каждый раз меняя первоначальный выбор. Я также заплатил ее брату, чтобы он тоже сыграл в эту игру 100 раз, каждый раз оставляя первоначальное решение. Дочь выиграла 72 раза; ее брат – 33 раза. Усилия каждого были вознаграждены двумя долларами.
41
John Tierney, And behind Door No. 1, a Fatal Flaw, New York Times, April 8, 2008.
29
Вы можете сыграть в эту игру на сайте http://www.nytimes.com/2008/04/08/science/08monty.html?_r=2&oref=slogin&oref=slogin.