Чтение онлайн

на главную - закладки

Жанры

Голая статистика. Самая интересная книга о самой скучной науке
Шрифт:

Данные из эпизодов игры Let’s Make a Deal свидетельствуют о такой же закономерности. Согласно Леонарду Млодинову, автору книги The Drunkard’s Walk, те из финалистов, кто изменил свой первоначальный выбор, становились победителями примерно в два раза чаще, чем те, кто оставался при своем мнении {42} .

Мое второе объяснение данного феномена основывается на интуиции. Допустим, правила игры слегка поменялись. Например, финалист начинает с выбора одной из трех дверей: Двери № 1, Двери № 2 и Двери № 3, как и было предусмотрено изначально. Однако затем, прежде чем открыть какую-то из дверей, за которой скрывается козел, Монти Холл спрашивает: «Согласны ли вы отказаться от своего выбора в обмен на открывание двух

оставшихся дверей?» Таким образом, если вы выбрали Дверь № 1, вы можете передумать в пользу Двери № 2 и Двери № 3. Если сперва указали на Дверь № 3, можете выбрать Дверь № 1 и Дверь № 2. И так далее.

42

Leonard Mlodinow, The Drunkard’s Walk: How Randomness Rules Our Lives (New York: Vintage Books, 2009).

Для вас это было бы не особо трудным решением: совершенно очевидно, что вам следует отказаться от первоначального выбора в пользу двух оставшихся дверей, поскольку это повышает шансы на выигрыш с 1/3 до 2/3 . Самое интересное, что именно такой в сущности вариант предлагает вам Монти Холл в реальной игре, после того как откроет дверь, за которой скрывается козел. Принципиальный факт заключается в том, что если бы вам была предоставлена возможность выбрать две двери, за одной из них в любом случае скрывался бы козел. Когда Монти Холл открывает дверь, за которой находится козел, и только после этого спрашивает вас, согласны ли вы изменить свой первоначальный выбор, он существенно повышает ваши шансы на выигрыш ценного приза! По сути, Монти Холл говорит вам: «Вероятность того, что ценный приз скрывается за одной из двух дверей, которые вы не выбрали с первого раза, составляет 2/3 , а это все-таки больше чем 1/3 !»

Это можно представить себе так. Допустим, вы указали на Дверь № 1. После этого Монти Холл дает вам возможность отказаться от первоначального решения в пользу Двери № 2 и Двери № 3. Вы соглашаетесь и получаете в свое распоряжение две двери, а это означает, что у вас есть все основания рассчитывать на выигрыш ценного приза с вероятностью 2/3 , а не 1/3 . А что было бы, если бы в этот момент Монти Холл открыл Дверь № 3 – одну из «ваших» дверей, – и за ней оказался бы козел? Поколебал бы этот факт вашу уверенность в принятом решении? Конечно же нет. Если бы автомобиль скрывался за Дверью № 3, Монти Холл открыл бы Дверь № 2! Он бы ничего вам не показал.

Когда игра идет по накатанному сценарию, Монти Холл действительно предоставляет вам выбор между дверью, которую вы указали поначалу, и двумя оставшимися дверями, за одной из которых может находиться автомобиль. Когда Монти Холл открывает дверь, за которой скрывается козел, он просто оказывает вам любезность, демонстрируя, за какой из двух других дверей нет автомобиля. Вы располагаете одинаковыми вероятностями выигрыша в обоих из указанных ниже сценариев.

1. Выбор Двери № 1, затем согласие «переключиться» на Дверь № 2 и Дверь № 3 еще до того, как будет открыта какая-либо дверь.

2. Выбор Двери № 1, затем согласие «переключиться» на Дверь № 2, после того как Монти Холл продемонстрирует вам козла за Дверью № 3 (или выбор Двери № 3, после того как Монти Холл продемонстрирует вам козла за Дверью № 2).

В обоих случаях отказ от первоначального решения обеспечивает вам преимущество двух дверей по сравнению с одной, и вы можете таким образом удвоить свои шансы на выигрыш: с 1/3 до 2/3 .

Мой третий вариант представляет собой более радикальную версию той же базовой интуиции. Допустим, Монти Холл предлагает вам выбрать одну из 100 дверей (вместо одной из трех). После того как вы это сделаете, скажем, указав на Дверь № 47, он открывает 98 оставшихся дверей, за которыми оказываются козлы. Теперь закрытыми остаются всего две двери: ваша Дверь № 47 и еще одна, например Дверь № 61. Следует ли вам отказаться от своего первоначального выбора?

Разумеется да! С 99-процентной вероятностью автомобиль находится за одной из дверей,

которые вы не выбрали поначалу. Монти Холл оказал вам любезность, открыв 98 таких дверей, за ними автомобиля не было. Таким образом, существует лишь 1 из 100 шансов, что ваш первоначальный выбор (Дверь № 47) будет правильным. В то же время существует 99 из 100 шансов, что ваш первоначальный выбор неправильный. А если так, то автомобиль находится за оставшейся дверью, то есть Дверью № 61. Если вы хотите сыграть с вероятностью выигрыша в 99 случаях из 100, то вам следует «переключиться» на Дверь № 61.

Короче говоря, если вам когда-нибудь придется участвовать в игре Let’s Make a Deal, вам, безусловно, нужно отказаться от своего первоначального решения, когда Монти Холл (или тот, кто будет его замещать) предоставит вам возможность выбора. Более универсальный вывод из этого примера состоит в том, что ваши интуитивные догадки относительно вероятности наступления тех или иных событий могут подчас вводить вас в заблуждение.

6. Проблемы с вероятностью

Как самоуверенные знатоки математики едва не разрушили глобальную финансовую систему

Статистика не может быть более совершенной, чем люди, которые ее используют. Но иногда она заставляет умных людей делать глупости. Одним из самых безответственных случаев применения статистики за последнее время стал механизм оценивания рисков на Уолл-стрит перед финансовым кризисом 2008 года. В то время компании, представляющие финансовый сектор, использовали общепринятый барометр риска – модель стоимости риска, или рисковой стоимости (Value-at-Risk – VaR). Теоретически VaR сочетала в себе элегантность индикатора (совмещая обширную информацию в едином числовом показателе) с мощью вероятности (присоединяя ожидаемую прибыль или убыток к каждому из активов или торговым позициям соответствующей фирмы). Такая модель исходила из того, что для каждой инвестиции компании существует определенный диапазон возможных исходов. Если, например, компания владеет акциями General Electric, то их стоимость может повышаться или понижаться. Когда VaR вычисляется для некоего короткого промежутка времени, например недели, то самым вероятным исходом станет то, что в конце данного периода у этих акций будет примерно такая же стоимость, как и в начале. Вероятность того, что их стоимость повысится или снизится на 10 %, относительно невелика. Еще меньше вероятность того, что она повысится или снизится на 25 %, и т. д.

На основе прошлых данных о движениях рынка «количественные» эксперты компании (в сфере финансов их часто называют «квантами» [от слова quantitative, то есть «количественный»], а во всех остальных отраслях – «богатенькими ботанами») могли определить максимальную сумму в денежном выражении (например, 13 миллионов долларов), которую фирма может с 99-процентной вероятностью потерять на данной позиции в течение рассматриваемого периода времени. Другими словами, в 99 случаях из 100 компания не потеряет более 13 миллионов долларов на конкретной торговой позиции; а в 1 случае из 100 потеряет.

Запомните последнее утверждение, поскольку вскоре оно станет важным.

До финансового кризиса 2008 года фирмы охотно использовали модель VaR для оценки своего суммарного риска. Если у какого-либо отдельно взятого трейдера было 923 различных открытых позиции (инвестиций, стоимость которых могла расти или падать), то каждую из таких инвестиций можно было оценить, как описано выше для акций General Electric, и на основе этого вычислить совокупный риск портфеля данного трейдера. Формула даже учитывала корреляции между разными позициями. Если, например, ожидаемые доходности двух инвестиций отрицательно коррелированы между собой, то убыток по одной из них, скорее всего, будет компенсирован прибылью по другой; таким образом, две инвестиции в совокупности менее рискованны, чем каждая в отдельности. В целом глава торгового отдела должен знать, что, скажем, у Боба Смита, торгующего облигациями, 24-часовая VaR (стоимость риска в течение ближайших 24 часов) 19 миллионов долларов – как указывалось выше, с 99-процентной вероятностью. Максимум, что может потерять Боб Смит в течение ближайших 24 часов, это 19 миллионов долларов – в 99 случаях из 100.

Поделиться:
Популярные книги

Эфир. Терра 13. #2

Скабер Артемий
2. Совет Видящих
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эфир. Терра 13. #2

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак