Чтение онлайн

на главную

Жанры

Шрифт:

Так выясняется с предельной четкостью сущность и диалектическое место конгруэнции.

4. Теперь мы можем сформулировать и соответствующие геометрические аксиомы.

a) Аксиома конгруэнтности, следовательно, должна указывать на постоянное самотождество ставшего. В арифметике, где становление было арифметической операцией, а ставшее было результатом этой операции, аксиома конгруэнтности свелась на учение о самотождестве результата операции в условиях вариирования самого становления, т. е. в условиях перемены формальной структуры самих операций. Это и дало «законы счета». В геометрии мы имеем дело не со счетом, но с построением. Требуется, следовательно, утвердить самотождество результата построения, т. е. самотождество фигуры (точнее, ее структуры, поскольку речь идет о ставшем в условиях изменения формальной структуры самих построений). Имеется фигура, например прямая.

Мы ее построили определенным образом, например соединили две разные точки. Переменим структуру этого построения. Сделать это в отношении столь простого геометрического образования, как прямая, можно только путем обратного процесса, соединения не точки А с точкой В, но В с А. Если при этом прямая не изменится, значит, действует аксиома конгруэнтности. Везде тут фигура как ставшее будет тождественна сама себе, как бы мы ни вели себя в сфере становления, в результате которого появилось наше ставшее.

Аксиома ставшего числового бытия в геометрии: геометрическое построение имеет своим основанием тождество направлений [своего ] становления. Другими словами, геометрическое построение зависит только от своей чисто пространственной структуры при любом инобытийном воспроизведении ее элементов.

b) В свете этой общей аксиомы, полученной чисто диалектическим путем, будет понятным и многое из того, что рассказывается в математической литературе об аксиомах конгруэнтности. Нужно сказать, что математика и здесь не выдерживает ясного принципа, то объединяя конгруэнцию с предыдущими аксиомами, то ее им противопоставляя. Гильберт, например, формулирует аксиому линейной и плоскостной конгруэнтности и не формулирует конгруэнтности для пространства, выводя ее из сочетания линейно–плоскостной конгруэнтности с аксиомами сочетания и порядка, что, конечно, абсолютно] невозможно, так как аксиомы сочетания и порядка играют в пространственной конгруэнтности ровно ту же роль, что в линейной и в плоскостной. Это можно было бы утверждать, если бы пространственная фигура вообще ничего оригинального в себе не содержала бы по сравнению с линией и плоскостью. Если применение конгруэнтности к одним из элементов, построенных на основании аксиом едино–раздельности, требует аксиоматического закрепления, то это закрепление необходимо и ко всем другим из них. Поэтому для начала лучше вообще не говорить об отдельных фигурах, а нужно говорить о фигуре вообще.

Самой общей и отвлеченной аксиомой ставшего бытия, выраженной в геометрических терминах, может служить такая.

1. Каждая геометрическая фигура конгруэнтна самой себе.

Обыкновенно говорят об отрезке, который равен самому себе, где бы мы его ни откладывали. Но, снижая это суждение до наибольшей внутренней краткости, можно сказать, что каждая геометрическая фигура просто конгруэнтна сама себе, так как для установления конгруэнтности достаточно эту линию (как выяснялось выше, в п. 2с [68] ) отложить на ней же самой (для большей ясности это можно сделать с ее другого конца).

68

В рукописи: п. 2b.

Этот общий геометрический принцип можно детализировать, как детализировали мы в § 65 аксиомы счета. Тогда его можно заменить рядом аксиоматических утверждений, из которых наиболее важны такие два.

2. Две или несколько геометрических фигур конгруэнтны между собою, если соответственно конгруэнтны их элементы.

Эта аксиома, во–первых, может являться аналогией для коммутативного и ассоциативного закона в арифметике. Если имеется линия и на ней точка, делящая эту линию в том или другом отношении, то безразлично, какую из этих обеих частей сначала откладывать на новой прямой; сумма их все равно будет конгруэнтна данной линии (коммутативный закон). Также, имея линию, разделенную на несколько частей, можно в любом порядке откладывать эти части; сумма от него не изменится (ассоциативный закон). Не требует пояснений и геометрический аналог дистрибутивного закона. Эта же аксиома охватывает и аксиому Гильберта 2: «Пусть А В и ВС—два отрезка на прямой а без общих точек; далее, пусть А'В' и В'С' — два отрезка на той же или на другой прямой а' тоже без общих точек. Если при этом А В конгруэнтна А' В' и ВС, то всегда также АС конгруэнтна А'С'».

3. Две фигуры, конгруэнтные третьей, конгруэнтны между собою.

Нет нужды пояснять полнейшую аналогию этой аксиомы с общей идеей арифметической конгруэнтности, формулированной выше,

в § 65.2а. Ее считает нужным ввести в число своих аксиом конгруэнтности и Гильберт.

с) Наконец, эти общие аксиомы геометрической конгруэнтности могут быть распространены и на отдельные фигуры, если иметь в виду соответствующие аксиомы едино–раздельности. Таковы аксиомы:

1. Каждый отрезок может быть однозначно определенным образом отложен по любую сторону на любой прямой от любой точки.

2. Каждый угол может быть однозначно определенным образом отложен в любой плоскости по любую сторону при любом луче.

3. Каждое тело может быть однозначно определенным образом построено в любом пространстве при соответствующих координатных данных.

5. В заключение остается еще сказать несколько слов относительно связи аксиом конгруэнтности с предыдущими аксиомами. Если мы обозначим аксиомы едино–раз–дельности через А, аксиомы непрерывности через В, аксиомы конгруэнтности через С, то, минуя полную систематику всех возможных здесь геометрических комбинаций (что мы делаем во втором томе), можно покамест отметить такие четыре комбинации:

1) А, В, С,

2) А, не–В, С,

3) А, <В>, не–С,

4) А, не–В, не–С.

Что касается первой комбинации, то ясно, что она (со включением аксиомы параллельности, которую мы еще не рассматривали) есть наша обыкновенная элементарная эвклидовская геометрия.

Но что такое вторая комбинация? Может ли существовать пространство, которое подчинено аксиомам еди–но–раздельности и конгруэнтности, но не подчинено аксиомам непрерывности? Очевидно, такое построение невозможно. Допустим, что наши линии прерывны, что наше пространство не гарантирует нам возможности его заполнить и что, скажем, откладывая наш отрезок на какой–нибудь прямой, мы вдруг убеждаемся, что он разломился и внутренняя последовательность его точек прервалась. Можно ли после этого ожидать, что весь отрезок целиком уложится на прямой, где ему будет отведено такое же место, какое он занимает сам по себе? Ясно, что эти два отрезка при взаимном наложении не будут совпадать. Следовательно, геометрия, в которой нет идеи непрерывности, не может иметь и идеи конгруэнтности.

Что такое третья комбинация? Возможна ли едино–раздельная непрерывность без конгруэнтности ? Если бы она была невозможна, то конгруэнтность была бы пустым [понятием] без всякого смысла и она ничем не отличалась бы от самой непрерывности. Тут–то как раз и выясняется все своеобразие этой категории. Когда фигура непрерывна, [она] в то же время [может быть] лишена идеи конгруэнтности. Тут выясняется именно структурный характер конгруэнтности, в отличие от которой непрерывность касается только факта, становящегося факта построения, а не структуры этого построения.

Такую геометрию, вообще говоря, можно было бы назвать непаскалевой, поскольку в ней отсутствует известная теорема Паскаля о пересечении сторон угла параллельными линиями (или, что то же, о шестиугольнике, вписанном в коническое сечение, имеющее форму двух прямых) и поскольку эта теорема связана с законом коммутативности умножения. Однако для точности надо сказать, что в непаскалевой геометрии соблюдаются как оба ассоциативных и оба дистрибутивных закона, так и коммутативный в сложности.

Если к этому присоединить аксиому непрерывности, то нетрудно дедуцировать отсюда коммутативность умножения, т. е. тем самым теорему Паскаля. Следовательно, хотя упомянутая комбинация А> В, не–С внешне и выражена, если брать эти категории в чистом виде, но те из <.··>> которые наблюдаются в геометрии архимедовой и паскалевой (а также еще и дезарговой, ср. выше теорему Дезарга о проектности треугольника в § 63.5), делают невозможным объединение дезарговой, архимедовой и непаскалевой геометрий.

Что касается, наконец, четвертой комбинации, в которой отсутствует и непрерывность, и конгруэнтность, если вообще мыслимо отсутствие одной из этих категорий, то вполне представимо и отсутствие их обеих. Можно даже сказать, что эта геометрия и не может не быть непаскалевой, раз она неархимедова (как это видно из предыдущего).

Вообще говоря, в суждении о всех этих типах геометрических построений можно руководствоваться следующей схемой [69] .

§ 67. Аксиома ставшего числового бытия в теории множеств.

69

В рукописи схема не сохранилась.

Поделиться:
Популярные книги

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии