Чтение онлайн

на главную

Жанры

Характер физических законов
Шрифт:

3. Но поразительнее всего то, что закон тяготения прост. Его легко сформулировать так, чтобы не оставалось никаких лазеек для двусмысленности и для иного толкования. Он прост и поэтому прекрасен. Он прост по форме. Я не говорю, что он действует просто – движение разных планет, их взаимное влияние могут быть очень запутанными, и определить, как движется каждая звезда в шаровом скоплении, не в наших силах. Закон действует сложно, но его коренная идея проста. Это и роднит все наши законы. Сами по себе они всегда оказываются простыми, хотя в природе действуют сложным образом.

4. И наконец, закон тяготения универсален. Он простирается на огромные расстояния, и Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, – это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему.

Увеличим еще в десять миллионов миллионов раз – и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький образчик его может открыть нам глаза на строение целого.

Лекция 2. Связь математики с физикой

Если задуматься о приложениях математики и физики, то совершенно очевидно, что математика будет полезна там, где мы имеем дело с большим числом объектов в сложной обстановке. В биологии, к примеру, действие вируса на бактерию не дает никакой пищи для математики. В микроскоп мы увидим, что проворный маленький вирус находит какое-то место в причудливой бактерии (все они имеют разную форму) и либо вводит в нее свою ДНК, либо не вводит. Но если мы будем экспериментировать с миллионами и миллионами бактерий и вирусов, то сможем очень многое узнать о поведении вирусов в среднем. Мы можем использовать математику для того, чтобы находить среднее, для того, чтобы выяснить, развиваются ли вирусы в бактериях, какие виды развиваются и в каком количестве; подобным образом мы можем изучать генетику, мутации и т. п.

Возьмем другой, более тривиальный пример. Представим себе огромную шахматную доску, на которой играют в шахматы или шашки. Каждый отдельный ход – операция не математическая или математически очень простая. Но нетрудно сообразить, что на доске с множеством фигур оценку наилучших ходов, ходов просто хороших или плохих можно сделать только после очень глубокого размышления, ибо каждый ход таит в себе огромное количество последствий. Тут необходимы абстрактные рассуждения и, следовательно, математика. Еще один пример – переключение в вычислительных машинах. Если у вас всего один переключатель, который может быть либо включен, либо выключен, то ничего особенно математического тут нет, хотя математики любят начинать именно с этого. Но чтобы предугадать поведение системы с множеством соединений и проводов, нужна математика.

Я хочу сказать с самого начала, что математика приносит огромную пользу физике там, где речь идет о деталях сложных явлений, если установлены основные правила игры. И если бы я говорил только о взаимоотношении математики и физики, то большую часть времени отвел бы именно этому вопросу. Но, поскольку лекции посвящены характеру физических законов, я не имею возможности подробно разбирать, что происходит в сложных ситуациях, и прямо перейду к своей теме – характеру основных законов. Если снова обратиться к нашим шахматам, то основные законы здесь – это правила, по которым движутся фигуры. Математику можно использовать в сложной обстановке, чтобы сообразить, какие ходы в данных обстоятельствах наиболее выгодны. Но для того чтобы выразить простую суть основных законов, требуется очень мало математики. В шахматах это можно сделать на нашем обычном языке.

В физике же и для основных законов нам нужна математика. Я приведу два примера: в одном математика, по существу, необязательна, а в другом необходима. Первый – закон физики, называемый законом Фарадея, который гласит, что при электролизе количество осажденного вещества пропорционально силе тока и времени его действия. Иначе говоря, количество осажденного вещества пропорционально заряду, проходящему через систему. Звучит это очень математически, но на самом деле все сводится к тому, что электроны, проходящие по проводам, несут только по одному заряду. В частности, можно предположить, что каждый электрон вызывает осаждение одного атома. Тогда число осажденных атомов равно числу прошедших электронов, т. е. пропорционально заряду, протекшему по проводу. Таким образом, этот закон, который кажется математическим, в основе своей прост и на самом деле не требует знания математики. Для осаждения одного атома нужен один электрон – это, конечно, математика, но не та математику, о которой мы здесь говорим.

Второй пример – это закон тяготения Ньютона, который мы рассматривали в предыдущей лекции. Я привел вам уравнение чтобы поразить вас тем, насколько быстро математические символы могут передавать информацию. Я говорил, что сила пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними, а также что тела реагируют на силы, изменяя свою скорость в направлении действия силы на величину, пропорциональную силе и обратно пропорциональную своим массам. Как видите, все это слова, и было совсем не обязательно писать уравнение. Тем не менее здесь есть математика, и мы можем спросить себя, почему такой закон может быть основным законом. Что делает планета? Неужели она смотрит на Солнце, видит, насколько оно удалено, и вычисляет на своем арифмометре обратный квадрат расстояния, чтобы узнать, как нужно двигаться? Ясно, что это не объяснение механизма гравитации! Вам, может быть, захочется взглянуть поглубже, и многие пытались это сделать. Еще Ньютона спрашивали о его теории: «Но ведь она ничего не говорит, она ничего не объясняет?» Ньютон отвечал: «Она говорит, как движутся тела. Этого должно быть достаточно. Я сказал вам, как они движутся, а не почему». Но людей зачастую трудно удовлетворить, не объяснив им механизм, и я расскажу об одной из теорий, которые выдвигались в качестве объяснения гравитации. Согласно этой теории, тяготение представляет собой результат многих отдельных воздействий, и этим объясняется, почему закон Ньютона связан с математикой.

Предположим, что мир повсюду полон частиц, пролетающих сквозь нас с очень большой скоростью. Они летят во всех направлениях – просто проносятся мимо, но некоторые из них попадают в нас. Мы и Солнце практически прозрачны для них, практически, но не полностью, и некоторые из них нас ударяют. Посмотрим, к чему это должно привести.

На рис. 12 С – Солнце, З – Земля. Если бы Солнца не было, то частицы обстреливали бы Землю со всех сторон, барабанили по ней, и каждая упавшая частица немного подталкивала бы Землю. Это не сдвинет Землю ни в каком определенном направлении, потому что с одного боку налетает столько же частиц, сколько с другого, снизу столько же, сколько сверху. Однако если Солнце на месте, то оно в какой-то мере поглощает частицы, летящие с этой стороны, потому что некоторые из них, попадая в Солнце, не проходят его насквозь. Следовательно, со стороны Солнца к Земле прилетает меньше частиц, чем с других сторон, ибо они наталкиваются на препятствие – Солнце. Нетрудно понять, что чем дальше Солнце, тем меньшую долю частиц, попадающих на Землю, оно будет задерживать. Солнце будет казаться меньше – как раз пропорционально квадрату расстояния. Поэтому со стороны Солнца на Землю будет действовать импульс, обратно пропорциональный квадрату расстояния. Он будет представлять собой результат большого количества простых операций – ударов, которые один за другим сыплются со всех сторон. Таким образом, в этом математическом соотношении нет ничего странного, ибо основная операция значительно проще, чем подсчет обратного квадрата расстояния. Подсчет производят сами частицы, ударяясь о Землю.

Единственный недостаток этой схемы в том, что она не годится совсем по другим соображениям. Всякую придуманную теорию надо проанализировать в отношении всех ее возможных последствий, выяснить, не предсказывает ли она другие явления. А эта теория предсказывает другие явления. Если Земля движется, то спереди в нее будет ударяться больше частиц, чем сзади. (Когда вы бежите под дождем, в лицо вам попадает больше капель, чем на затылок, именно потому, что вы бежите.) Если Земля движется, то она налетает на те частицы, которые находятся перед ней, и убегает от тех, которые догоняют ее сзади. Спереди на нее будет падать больше частиц, чем сзади, и они создадут силу, противодействующую движению. Эта сила замедлила бы движение Земли, и Земля не смогла бы долго продержаться на орбите, – но она ведь держится уже три или четыре миллиарда лет. Так приходит конец этой теории. «Что же, – скажете вы, – теория была неплохая, и хоть ненадолго, но позволила мне забыть о математике. Может быть, мне удастся придумать лучшую». Может быть, и удастся – окончательная истина никому еще не известна. Но со времени Ньютона и до наших дней никто не мог описать механизм, скрытый за законом тяготения, не повторив того, что уже сказал Ньютон, не усложнив математики или не предсказав явлений, которых на самом деле не существует. Так что до сих пор у нас нет иной модели для теории гравитации, кроме математической.

Если бы существовал только один закон такого характера, то это было бы интересным, хотя и досадным исключением. Но, оказывается, чем больше мы исследуем, чем больше законов мы открываем, чем глубже проникаем в природу, тем более хронической становится болезнь. Каждый новый наш закон – чисто математическое утверждение, притом довольно сложное и малопонятное. Ньютонова формулировка закона тяготения – это сравнительно простая математика. Но она становится все менее понятной и все более сложной по мере того, как мы продвигаемся вперед. Почему? Не имею ни малейшего понятия. Моя цель в том и состоит, чтобы лишь сообщить об этом факте. В нем и заключается смысл всей лекции: нельзя честно объяснить все красоты законов природы так, чтобы люди восприняли их одними чувствами, без глубокого понимания математики. Как ни прискорбно, но, по-видимому, это факт.

Поделиться:
Популярные книги

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Совок 11

Агарев Вадим
11. Совок
Фантастика:
попаданцы
7.50
рейтинг книги
Совок 11

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф