Импульсные блоки питания для IBM PC
Шрифт:
Рис. 3.13. Принципиальная схема вторичной цепи (вариант 1)
В канале фильтрации напряжения +5 В использовано два последовательно соединенных Г-образных фильтра. Первый включает в себя обмотку дросселя L1 и конденсатор C4, параллельно которому установлен балансный резистор R4. Второй фильтр образован дискретным дросселем L4 и группой электролитических конденсаторов C8, C9 и C10. Стабилизация напряжений вторичной цепи производится слежением за состоянием выходного уровня канала +5 В.
Схема выпрямителя и фильтра канала напряжения +12 В аналогична схеме, приведенной на рис. 3.2. Вентилятор подключается также к выходу стабилизированного напряжения этого канала. Последовательно с вентилятором включен токоограничивающий резистор R7. Типовое значение номинала этого резистора составляет 10 Ом при максимальной рассеиваемой мощности 0,5 Вт.
Наибольшее отличие от других схемотехнических решений наблюдается в построении каналов с отрицательными номиналами выходных напряжений. Общий фильтр для двух отрицательных напряжений также выполнен в виде двух Г-образных индуктивно-емкостных фильтров. К выходу стабилизированного напряжения -12 В через диод D5 подключен интегральный стабилизатор на микросхеме IC1 типа 7905. Схема интегрального стабилизатора для канала -12 В одновременно выполняет роль балансного резистора, обеспечивающего частичный разряд конденсатора C7. Выходное напряжение -5 В параметрического стабилизатора на IC1 дополнительно сглаживается конденсатором C11.
В главе 2 (см. рис. 2.17) был представлен фрагмент принципиальной схемы вторичной цепи источника, в котором средняя точка обмотки напряжения +12 В соединена с выходом канала +5 В. Такое решение используется и в схемотехнике источников для компьютеров класса XT/AT. Принципиальная схема подобной вторичной цепи источника питания (вариант 2) представлен на рис. 3.14.
Такой вариант включения обмотки позволяет применить в выпрямительной схеме канала +12 В диоды Шоттки. В этих диодах при работе с импульсными напряжениями ~50 В происходит возрастание обратных токов, что и диктует необходимость снижения импульсного напряжения на них. При включении выпрямителя согласно схеме, приведенной на рис. 3.14, снижается амплитуда импульсов, воздействующих на выпрямительную схему, до уровня, при котором диоды сборки работают достаточно эффективно.
Источниками вторичных импульсных напряжений в схеме (рис. 3.14) являются три обмотки W1, W2 и W3 трансформатора T. Обмотка W1 используется для получения только напряжения +5 В. С обмотки W2 снимается импульсное напряжение, из которого после фильтрации получают стабилизированное постоянное напряжение +12 В. Обе обмотки W1 и W2 нагружены на выпрямительные сборки, состоящие из диодов Шоттки. Цепи фильтрации импульсного входного напряжения во всех каналах построены на основе индуктивно-емкостных Г-образных фильтров. В канале напряжения +5 В единственным индуктивным элементом в фильтре является одна из обмоток дросселя L1. Все остальные каналы дополнены отдельными дросселями, включенными последовательно с обмотками дросселя групповой стабилизации L1.
Выводы комбинированной обмотки W3 присоединяются к катодам обычных импульсных выпрямительных диодов D1 – D4. Средняя точка обмотки W3 подключена к общему проводу вторичной цепи питания. Диоды D1 и D4 образуют двухполупериодный выпрямитель канала напряжения -12 В. Аналогичная выпрямительная схема для канала -5 В выполнена на диодах D2 и D3. Во вторичную цепь введен дроссель L1 групповой стабилизации вторичных напряжений по взаимным магнитным потокам. Несмотря на это, в каждом канале напряжений с отрицательными значениями включены интегральные стабилизаторы на IC1 и IC2. Между входом и выходом каждого интегрального стабилизатора подключаются демпфирующие диоды.
В схемах, где возбуждение микросхемы управления TL494 производится первичным импульсом, напряжение питания этой микросхемы и промежуточного усилителя снимается с выхода выпрямительной схемы канала +12 В. Каскады фильтрации данного напряжения аналогичны приведенным на рис. 3.13 и на этом рисунке не показаны. Амплитуда импульсов на выходе выпрямителя составляет ~60 В. Уровень отфильтрованного постоянного напряжения непосредственно на ШИМ преобразователе будет зависеть от длительности выпрямленного импульса и промежутка между импульсами «мертвой зоны». Диапазон изменения постоянного напряжения составляет примерно от +25 до +30 В.
3.4.4. Цепи защиты и цепи формирования служебных сигналов
Энергетические характеристики силовых элементов импульсного преобразователя были выбраны, исходя из предположения, что в установившемся режиме работы на предельной мощности они не превысят предельно допустимых норм для данного прибора. Наиболее критичными являются режимы работы силовых транзисторов. Полумостовые импульсные преобразователи характеризуются тем, что максимальное напряжение на силовых транзисторах этой схемы равно напряжению питания каскада. Броски напряжения, возникающие в моменты коммутации транзисторов, устраняются включением защитных диодов между коллектором и эмиттером каждого силового транзистора. Такими диодами на принципиальной
Наиболее критичным для работы силовых элементов (транзисторов) в усилителе мощности оказывается неконтролируемое возрастание нагрузки по вторичным каналам напряжения, которое превышает установленный предельный уровень. Увеличение нагрузки приводит к росту тока, коммутируемого транзисторами полумостового усилителя мощности. Процесс неконтролируемого нарастания тока и превышения максимально допустимых значений может быть только следствием неисправности и возникновения экстренной ситуации в нагрузочной цепи. Иногда это может быть обусловлено неправильным использованием преобразователя в режимах, не предусмотренных техническими характеристиками. Для предотвращения повреждения элементов импульсного преобразователя в схему вводятся каскады, предназначенные для отключения формирователя ШИМ последовательностей. После остановки работы ШИМ регулятора прекращается подача управляющих импульсов в силовые цепи. Оба транзистора полумоста «замирают» в закрытом состоянии, их коммутация прекращается. Защита источника питания от перегрузки по вторичным цепям выполняется остановкой преобразователя. Прекращение коммутации силовых транзисторов вызывает понижение напряжения питания на ШИМ каскаде. Если не происходит выгорание сетевого предохранителя, то единственным каскадом, остающимся под напряжением питания, будет усилитель мощности. Все выходные цепи имеют гальваническую развязку от первичной сети, поэтому в отсутствие импульсных колебаний на входе усилителя мощности напряжения на них будут отсутствовать.
Существуют различные схемы построения каскадов защиты. Общим для всех схем является то, что их действие вызывает остановку функционирования маломощной схемы ШИМ регулятора при возникновении перегрузки в выходных цепях. Перегрузка источника питания по каждому каналу проявляется индивидуально. В соответствии с этим строится система блокировки работы ШИМ преобразователя. В системе защиты учитывается поведение схемы при увеличении нагрузки по сильноточным каналам, то есть +5 и +12 В. По мере возрастания нагрузки по этим каналам происходит заметное увеличение длительности импульсов управления усилителем мощности. Комплексная система защиты производит слежение за их длительностью. В качестве датчика контроля длительности управляющих импульсов в схеме, приведенной на рис. 3.2, используется узел, основу которого составляют трансформатор T3 и схема на диодах D9 и D10. Первичная обмотка W3 трансформатора T3 включена в первичную цепь. Через нее протекает такой же импульсный ток, как и через первичную обмотку силового трансформатора. Вторичные обмотки W1 и W2 этого трансформатора присоединены к анодам диодов D9 и D10, катоды которых подключены к общему проводу вторичной цепи питания. Этими диодами образован двухполупериодный выпрямитель. Вторичные обмотки соединены последовательно. С точки соединения обмоток снимается сигнальное импульсное напряжение отрицательной полярности, которое сглаживается на фильтре, образованном элементами R19 и C7. Через балансный резистор R12 происходит частичный разряд конденсатора C7 при текущей работе и полный разряд при отключении источника питания от сети. В процессе работы преобразователя, когда происходит нормальная коммутация силовых транзисторов, на отрицательной обкладке конденсатора C7 накапливается заряд, пропорциональный длительности импульсов. Напряжение с этой обкладки через резистор R14 подается на вывод IC1/15. Туда же через резистор R13 подводится напряжение вторичного канала источника питания +5 В. Согласно функциональной схеме, показанной на рис. 2.7, вывод IC1/15 является инвертирующим входом внутреннего усилителя ошибки DA4 ШИМ преобразователя. Выходы внутренних усилителей DA3 и DA4 микросхемы TL494 объединены по схеме монтажного ИЛИ через диоды развязки. Неинвертирующий вход внутреннего усилителя DA4 (вывод IC1/16) подсоединен к общему проводу. Внутренний усилитель DA4 включен в режиме компаратора напряжения. Компаратор производит сравнение потенциалов на своих входах. В зависимости от их соотношения выходное напряжение принимает значения низкого или высокого уровней, быстро минуя промежуточные стадии переключения. Пока напряжение на выводе IC1/15 положительное, выход усилителя DA4 имеет низкий уровень напряжения, которым устанавливается обратное смещение на диоде D2. В таком режиме этот усилитель не оказывает влияния на работу ШИМ компаратора DA2 и усилителя ошибки, выполненного на усилителе DA3. Когда напряжение на входе IC1/15 понижается до отрицательного уровня, происходит изменение состояния выхода DA4. На нем устанавливается положительное напряжение, практически равное по величине напряжению питания этого усилителя. Происходит открывание диода D2, и положительное напряжение поступает на неинвертирующий вход ШИМ компаратора DA2. Этим положительным напряжением запирается диод D1. Таким образом, отключается внутренний усилитель ошибки на DA3. На выходе внутреннего компаратора DA2 появляется устойчивый положительный потенциал, являющийся запрещающим для работы внутреннего логического элемента на DD1. Через элемент DD1 прекращается подача импульсов на цифровой тракт микросхемы IC1 и, следовательно, выработка импульсов на выходных контактах ШИМ преобразователя останавливается.
Делитель напряжения образован резисторами R13 и R14, подключенными к выводу IC1/15. Один вывод делителя соединен с источником положительного напряжения вторичного канала +5 В, а второй – с источником отрицательного напряжения, формируемого на конденсаторе C7. На конденсатор C7 подается выпрямленное и отфильтрованное напряжение, источником которого являются вторичные обмотки трансформатора T3. Уровень напряжения на отрицательной обкладке конденсатора C7 пропорционален длительности импульсов, формируемых ШИМ преобразователем. Время нахождения силовых транзисторов усилителя мощности в активном состоянии, а, следовательно, и длительность импульсов зависят от уровня нагрузки вторичной цепи. Повышение нагрузки вызывает увеличение интервалов, в течение которых транзисторы находятся в открытом состоянии. При снижении нагрузки этот интервал уменьшается. Косвенное слежение за уровнем нагрузки по вторичной цепи проводится с помощью контроля за напряжением на конденсаторе C7. Изменение напряжения на выводе IC1/15 является следствием вариации потенциала на конденсаторе C7. Повышение нагрузки вторичной цепи вызывает рост отрицательного напряжения на C7, которое через резистор R14 передается на IC1/15. Когда отрицательная составляющая напряжения в резисторном делителе на R13 и R14 начинает преобладать над положительной, потенциал на IC1/15 становится отрицательным. Это вызывает переключение внутреннего компаратора DA4 микросхемы ШИМ преобразователя и полную блокировку работы каскада управления. Таким образом, на базе трансформатора T3 собран узел защиты источника питания от перегрузки по основным каналам импульсного источника питания. Оценка уровня нагрузки проводится по ширине импульсов, коммутируемых силовыми транзисторами полумостового усилителя мощности.
Описанный узел может выполнять защитные функции только по основным каналам вторичных напряжений, где перегрузка вызывает заметное изменение интервалов импульсов. Вариации нагрузки, подключенной к относительно слаботочным каналам отрицательных напряжений, такого влияния на силовой каскад оказать не могут. Поэтому для слежения за состоянием уровней напряжения по этим каналам используется отдельный электронный узел, который выполнен на основе транзистора Q1.
Контроль осуществляется по отрицательным каналам напряжения и вторичной цепи +12 В. Вторичные каналы подключаются к эмиттерной цепи транзистора Q1. Выход канала +12 В соединяется с эмиттером Q1 через стабилитрон D1. Напряжение -5 В подводится через диод D2, выходное напряжение -12 В подключается к делителю, состоящему из резисторов R1 – R3. Транзисторный каскад защиты через диод D4 подсоединен к выводу IC1/4 – неинвертирующему входу внутреннего компаратора DA2 микросхемы ШИМ преобразователя. Действие механизма защиты направлено на увеличение потенциала этого входа в случае возникновения нештатной ситуации в нагрузочных цепях вторичных каналов. Если напряжение на неинвертирующем входе DA1 превысит уровень пилообразного напряжения, действующего на втором входе компаратора, то произойдет остановка формирователя ШИМ последовательностей на выходах IC1. Возрастание напряжения на IC1/4 допускается только во время действия дестабилизирующих факторов в нагрузочных цепях. Во время нормального рабочего цикла преобразователя напряжение на этом входе не должно увеличиваться и вносить изменения в работу источника питания. Уровень напряжения на IC1/4 определяется резистивным делителем из R6 и R16 за вычетом напряжения, равного падению напряжения на диоде D4, а также состоянием переходов коллектор-эмиттер транзисторов Q1 и Q2. Резистор R6 подключен к источнику опорного напряжения схемы IC1. Транзисторы Q1 и Q2 соединены коллекторными электродами по схеме монтажного ИЛИ. Постоянное положительное смещение в базовую цепь транзистора Q2 не подается. В течение рабочего цикла этот транзистор остается закрытым и на уровень смещения на входе IC1/4 влияния не оказывает. Регулировка потенциала производится схемой на Q1. Для обеспечения процесса формирования импульсных последовательностей микросхемой IC1 на коллекторе Q1 должно устанавливаться напряжение, близкое к потенциалу общего провода либо с отрицательным уровнем. Такой режим транзистора поддерживается, если в его эмиттерной цепи напряжение имеет отрицательный уровень. База транзистора Q1 подключена к общему проводу, поэтому управление проводится по эмиттерному электроду. Отрицательным напряжением на эмиттере транзистор Q1 переводится в проводящее состояние или насыщение. В этом случае напряжение на его коллекторе также имеет низкий уровень и шунтирует положительный потенциал, создаваемый резистивным делителем на R6 и R16. Отрицательное смещение на эмиттере Q1 устанавливается резистивным делителем. Резистор R2 в этом делителе подсоединен непосредственно к выходу канала -12 В. В точке соединения резистора R2 и катода диода D2 напряжение имеет значение -5,8 В. При выбранном соотношении номиналов резисторов R1 и R3 транзистор Q1 находится в режиме насыщения, и напряжение на его эмиттере обусловлено открытым переходом база-эмиттер и равно примерно -0,8 В. Следовательно, напряжение на коллекторе имеет уровень, близкий к потенциалу общего провода. Напряжение +12 В не оказывает влияния на формирование напряжения на эмиттерном электроде, так как стабилитрон D1 выбирается с напряжением стабилизации 14–16 В. Если во вторичной цепи происходит КЗ по одному из каналов с отрицательным номиналом, то напряжение на эмиттере будет повышаться и приблизится к уровню общего провода. Если КЗ произойдет в канале -5 В, то на катоде диода D2 напряжение составит -0,7… -0,8 В. При этом на эмиттере Q1 потенциал будет иметь уровень примерно -0,2… -0,4 В, что не достаточно для перевода транзистора в активный режим. Короткое замыкание напряжения-12 В вызовет блокировку диодом D2 подачи напряжения -5 В в эмиттерную цепь транзистора Q1, так как диод в этом случае будет находиться под воздействием потенциала, вызывающего обратное смещение p-n перехода. В обоих случаях замыкания транзистор Q1 будет закрываться, это вызовет рост напряжения на его коллекторе. Увеличение напряжения передастся на вывод IC1/4, к которому подключен резистор R16. Значение сопротивления R16 в несколько раз превышает номинал R6, поэтому основное падение напряжения будет именно на R16, то есть на выводе IC1/4. Если напряжение на этом выводе превысит уровень +3 В, то произойдет блокировка цифрового тракта микросхемы IC1 и генерация импульсов на выводах IC1/8,11 прекратится.
Вторичные обмотки силового импульсного трансформатора выполняются проводами с различным сечением. Сечение провода обмоток маломощных каналов меньше, чем сечение основных каналов. Внутреннее сопротивление источника напряжения, который образует вторичная обмотка, у маломощных каналов более высокое. Значительное увеличение потребления тока по этим каналам вызовет заметное падение напряжения на нагрузке, поэтому схема защиты может среагировать на резкое изменение выходного уровня до появления чистого КЗ и отключит блок питания.
Активное групповое слежение за состоянием вторичных напряжений в источнике питания производится сравнением выходного напряжения канала +5 В с уровнем опорного напряжения, формируемого внутренним узлом микросхемы IC1. Если во вторичных цепях возникает большой разбаланс нагрузки, то напряжение в канале +12 В может сильно отличаться от номинальной величины. В качестве защитной меры от повышения напряжения в этой цепи к эмиттеру Q1 подключен датчик напряжения канала +12 В на стабилитроне D1. Когда значение выходного напряжения в этом канале превышает напряжение стабилизации стабилитрона D1, происходит пробой последнего, и отрицательное напряжение на эмиттере Q1 начинает компенсироваться положительным потенциалом, поступающим через D1. Снижение отрицательного напряжения в этой точке приведет к запиранию транзистора Q1 и возрастанию положительного уровня на R16. Дальнейшее воздействие на IC1/4 остановит ШИМ преобразователь.
В начальный момент подачи электропитания на микросхему IC1 на всех вторичных каналах напряжения отсутствуют. Поэтому транзистор Q1 не может находиться в активном состоянии и принимать участие в запуске схемы преобразователя. В это время на IC1/14 появляется опорное напряжение, которое через делитель из R6 и R16 поступит на IC1/4 и блокирует работу микросхемы. Для обеспечения нормального запуска IC1 применяется ключевой каскад на Q2, который начинает работать сразу после появления напряжения питания на выводе IC1/12. В базовую цепь Q2 включены резисторы R4 и R5. Резистор R4 через конденсатор C5 соединен с цепью питания микросхемы IC1/12. Когда происходит формирование начального импульса питания ШИМ преобразователя, положительное напряжение через разряженный конденсатор C5 поступает на резистор R4 и через него попадает на базу транзистора Q2. Возникшим импульсом транзистор открывается, и напряжение на коллекторе Q2 резко понижается до нулевого уровня. По мере заряда конденсатора C5 на его отрицательной обкладке происходит экспоненциальный спад положительного напряжения. Снижение положительного напряжения вызывает постепенное закрывание транзистора Q2. Постоянная времени разряда конденсатора определяется номиналами элементов C5 и R4 и параллельного соединения открытого перехода база-эмиттер транзистора Q2 и резистора R5. Параметры пассивных элементов должны выбираться таким образом, чтобы закрывание транзистора происходило после появления отрицательных напряжений вторичных каналов на резисторе R2 и диоде D2. Если это условие соблюдается, то после закрывания транзистора Q2 напряжение на аноде D4 не примет положительного значения и сбоя в работе источника питания не произойдет.
Диод D4 выполняет функции развязывающего элемента, отделяющего элементы схемы «медленного» запуска от узла защиты и схемы на Q2. Присутствие этого диода является необходимым условием плавного запуска ШИМ преобразователя, так как его наличие исключает шунтирование положительного потенциала на отрицательной обкладке конденсатора C6 открытым транзистором Q2. После завершения процедуры «медленного» запуска, если нагрузочные цепи в порядке, управление напряжением на выводе IC1/4 сначала переходит к транзистору Q2, а затем к Q1.
Основное назначение схем защиты источника питания – исключение повреждений компонентов самого преобразователя при возникновении во вторичной цепи неконтролируемого увеличения нагрузки выше уровня, оговоренного условиями технической эксплуатации. Существует различный подход как к организации защиты, так и к применению электронных элементов. Как правило, в схемотехнике узлов защиты производится разделение каскадов, отвечающих за контроль работы основных вторичных каналов и маломощных цепей. Во внутренней структуре микросхемы TL494 введено несколько функциональных узлов, через которые можно оказывать воздействие на основной тракт формирования ШИМ последовательностей от принудительного ограничения длительности выходных импульсов до полной блокировки схемы. В зависимости от организации схемы защиты влияние на работу основной схемы может быть оказано через один или несколько таких узлов. Каждая схема преобразователя содержит элементы защиты, но выполнены они по-разному. На приведенных ниже схемах защиты показаны разные варианты практической реализации данного узла.
На рис. 3.15 представлен один из вариантов системы комплексной защиты импульсного преобразователя напряжения.Рис. 3.15. Схема комплексной защиты от перегрузки (вариант 1)
На рис. 3.15 приведены основные элементы узла защиты. Нумерация элементов относится только к компонентам этого рисунка. На схеме показаны первичная цепь каскада промежуточного усилителя с согласующим трансформатором T, упрощенная схема включения микросхемы TL494. Узел защиты представлен полнофункциональной схемой.
Узел защиты выполняет следующие основные функции:
• контроль длительности импульсов управления силовым каскадом;
• блокировка работы узла ШИМ преобразователя в случае возникновения КЗ в каналах с отрицательными номиналами напряжений.
Оценка временного интервала, занимаемого положительным импульсом, проводится схемой постоянно. Слежение осуществляется с помощью элементов, подключенных к средней точке первичной обмотки согласующего трансформатора T. На среднем выводе первичной обмотки действует сигнал, форма которого представлена на рис. 2.11. Резистор R14, диод D5 и конденсатор C3 образуют схему выпрямителя и пассивного RC фильтра импульсного сигнала. В итоге на конденсаторе C3 появится положительное напряжение. Уровень этого напряжения будет прямо пропорционален длительности импульсов управления, формируемых микросхемой ШИМ преобразователя типа TL494. Напряжение, выделенное на конденсаторе C3, через резистор R10 подается на неинвертирующий вход внутреннего усилителя DA4 микросхемы TL494. На второй вход этого усилителя через вывод TL494/15 непосредственно поступает напряжение опорного источника +5 В. Логика работы этого каскада в части контроля длительности импульсов очень похожа на функционирование аналогичного узла из схемы, приведенной на рис. 3.2. Процесс контроля длительности импульсов управления включает в себя несколько этапов рабочего цикла узла защиты. На внутреннем усилителе DA4 производится постоянное сравнение уровней напряжений, действующих на его входах. Усилитель не оказывает влияния на работу ШИМ преобразователя, пока напряжение на выводе TL494/16 не превышает опорного уровня, постоянно установленного на выводе TL494/15. Увеличение нагрузки вторичной цепи источника питания будет отражаться на уровне напряжения, выделяемого на конденсаторе C3. Ширина управляющих импульсов будет возрастать, что вызовет увеличение напряжения на C3. Напряжение с конденсатора постоянно поступает на вход усилителя DA4. Пока оно ниже уровня, установленного на инвертирующем входе DA4, выходное напряжение усилителя равно нулю. Увеличение длительности выше установленного порога вызывает включение механизма ее постепенного ограничения. Усилитель на DA4 не охвачен обратной связью, поэтому на его выходе значение напряжения очень быстро изменяется. Повышение уровня на выходе усилителя DA4 приведет к блокировке усилителя ошибки DA3. На неинвертирующем входе ШИМ компаратора DA2 положительное напряжение также будет повышаться. При этом будет происходить принудительное ограничение длительности импульсов, формируемых схемой ШИМ преобразователя. Механизм активной защиты элементов источника питания включается с момента повышения напряжения на TL494/16 до уровня +5 В, когда напряжение на выходе DA4 начинает принимать положительное значение. Сначала наступает этап принудительного ограничения длительности импульсов управления. Сигнал рассогласования от DA3 растет, и ШИМ преобразователь старается компенсировать падение напряжения во вторичной цепи увеличением длительности импульсов управления. Когда происходит блокировка усилителя ошибки уровнем от DA4, продолжительность импульсов принудительно ограничивается. Если причина неконтролируемого увеличения потребления во вторичной цепи не устранена, то при достижении сигналом от усилителя DA4 уровня +3,2 В, на выходе ШИМ компаратора появляется устойчивый высокий уровень. Импульсных сигналов нет. Генерация выходных импульсов ШИМ преобразователем останавливается. Источник питания прекращает подачу энергии во вторичные цепи.
Фрагмент принципиальной схемы этого узла защиты (см. рис. 3.15) демонстрирует реализацию узла, ограничивающего длительности импульсов управления преобразователем, по сигналу датчика, полностью установленного во вторичной цепи источника питания. В предыдущем случае датчик располагался в силовой части схемы, а обработка его сигнала полностью была отнесена во вторичную цепь.
В случае возникновения КЗ по любому из каналов с отрицательными значениями напряжений, сигнал оповещения узла управления вырабатывается с помощью транзисторной схемы на Q1 и Q2. В базовой цепи транзистора Q1 включен делитель напряжения на резисторах R1 и R2. Питание делителя напряжения производится от разнополярных источников напряжения. Резистор R1 подключен к источнику опорного напряжения микросхемы TL494 с уровнем +5 В. Нижний по схеме вывод резистора R2 через резистор R3 соединен с цепью -12 В и через диод D1 с цепью -5 В. Номиналы сопротивлений резисторов R1 и R2 равны, поэтому напряжение на базе транзистора Q1 будет иметь небольшое отрицательное значение. Эмиттер этого транзистора соединен с общим проводом и, следовательно, переход база-эмиттер находится под напряжением обратного смещения. Транзистор закрыт, напряжение на коллекторе Q1 имеет высокий уровень. Поддерживание напряжения на базе, закрывающего транзистор Q1, возможно только в том случае, когда выдерживается расчетное соотношение напряжений -5 и -12 В. Если во вторичных цепях происходит КЗ, в результате которого одно из отрицательных напряжений изменяет свой уровень, то потенциал на базе транзистора Q1 начинает возрастать. В результате замыкания напряжения -12 В на диоде D1 появляется обратное смещение и блокируется подача напряжения -5 В на резистор R2. Базовый потенциал транзистора Q1 получит приращение положительного напряжения, подаваемого через R1. Аналогичная ситуация возникает при изменении напряжения -5 В до нулевого уровня. Диод D1 находится под воздействием отпирающего напряжения. Его анод подключается к общему проводу, а напряжение на катоде приобретает значение -0,7… -0,8 В. Это небольшое напряжение мало отличается от нулевого потенциала. На базе транзистора Q1 преобладающим оказывается положительный потенциал, которым транзистор открывается. Ключевая схема на транзисторе Q2 является нагрузкой транзисторного каскада на Q1. Коллектор транзистора Q2 через резистор R5 соединен с шиной питания ШИМ преобразователя, напряжение на которой в установившемся режиме находится в диапазоне +25. +30 В. Состояние ключа на Q2 является определяющим для функционирования микросхемы ШИМ преобразователя. В нормальном состоянии схемы защиты, когда в нагрузочной цепи уровни напряжений соответствуют номинальным, транзистор Q2 открыт и находится в насыщении. В этом состоянии происходит подключение резистора R5 через открытый транзистор Q2 к общему проводу. Диод D2 закрыт. Вывод 4 микросхемы TL494 через резистор R6 соединен с общим проводом. Внешние элементы не оказывают действия на работу ШИМ преобразователя. Когда происходит КЗ и последовательное переключение транзисторных ключей, напряжение на коллекторе закрытого транзистора определяется соотношением сопротивлений R6 и R5. Оно выбирается таким образом, чтобы уровень напряжения на выводе 4 схемы TL494 в момент срабатывания защиты составлял +5 В. Переключение транзисторов происходит достаточно быстро, поэтому напряжение на TL494/4 изменяется практически скачком. Резкое возрастание напряжение на неинвертирующем входе компаратора «мертвой зоны» блокирует логический элемент DD1. Работа схемы управления останавливается. Запуск ШИМ преобразователя возможен только после выключения и повторного подключения напряжения первичного питания, если предварительно устранена причина, вызывавшая КЗ или ненормированную перегрузку.
Работа схем защиты источника питания, представленных на рис. 3.2 и 3.15, характеризуется тем, что воздействие на ШИМ преобразователь при возникновении перегрузки по основным каналам и в случае КЗ слаботочных цепей производится по различным внутренним цепям схемы TL494. Узел защиты схемы, показанной на рис. 3.16, выполнен таким образом, что блокировка схемы управления производится по общему входу компаратора «мертвой зоны».
На данном рисунке приведены основные элементы, непосредственно относящиеся к каскаду защиты, а также датчик – измеритель длительности импульсов управления. Схема защиты, построенная в соответствии с рис. 3.16, выполняет отключение системы управления блоком питания при возникновении КЗ по любому из каналов с отрицательными номиналами напряжения, а также в случае увеличения длительности импульсов управления выше установленного интервала. После инициализации схемы ШИМ преобразователя процедурой «медленного» запуска, транзисторные каскады на Q1 и Q2 определяют состояние схемы управления импульсного усилителя мощности. Цикл «медленного» запуска заканчивается, и схема управления находится в нормальном рабочем режиме, когда оба транзистора Q1 и Q2 закрыты, а напряжение на выводе 4 микросхемы TL494 не будет превышать порогового уровня. Отключение ШИМ преобразователя и полная блокировка происходят при появлении на базе транзистора Q1
Контроль длительности импульсов управления осуществляется с помощью узла, собранного на элементах, подключенных к обмотке W2 согласующего трансформатора T. Специальная обмотка W2 не используется в схеме формирования импульсных сигналов, а является дополнительным элементом, выполняющим функции датчика длительности положительных импульсов управления источником питания. Один вывод обмотки W2 соединен с общим проводом вторичной цепи. Ко второму ее выводу подключен диод D8, образующий выпрямитель импульсного сигнала положительной полярности. Нагрузкой выпрямителя является емкостной фильтр на конденсаторе C5, на котором выделяется положительное напряжение, пропорциональное длительности импульсов управления. Далее в электрической цепи установлены резисторы R1 и R15 и подстроечный резистор R14. Цепью этих резисторов задается уровень напряжения на конденсаторе C5, при котором происходит открывание транзистора Q1. То есть соотношение резисторов в делителе определяет минимальную ширину импульсов управляющего сигнала, при которой происходит открывание транзистора Q1. В канале защиты применяются биполярные транзисторы разных типов проводимости, включенные по схеме электронных ключей. Транзистор Q1 открывается положительным напряжением относительно потенциала общего провода. Эмиттер транзистора Q2 соединен с выводом опорного напряжения схемы TL494. Его отпирание происходит, когда на базе действует напряжение, уровень которого ниже потенциала эмиттера. В режиме нормального функционирования возможно частичное открывание транзистора Q1, но оно не приводит к переключению Q2 из закрытого состояния в насыщение. В таком режиме напряжение на коллекторе Q2 мало изменяется и остается на уровне, близком к потенциалу общего провода. Низкое напряжение на аноде диода D4 не может его открыть, поэтому приращения напряжения на выводе 4 микросхемы TL494 не происходит. Потенциал этого вывода определяется падением только на резисторе R8.
Повышение нагрузки в основных каналах вторичной цепи приводит к тому, что схема управления усилителем мощности начинает увеличивать длительность импульсов для компенсации энергетических потерь. На дополнительной обмотке W2 согласующего трансформатора наводится ЭДС, форма которой полностью повторяет вид сигнала управления. Импульсный сигнал детектируется выпрямителем на D8 и фильтруется конденсатором C5. Если источник питания работает в режиме перегрузки, то постепенно напряжение на конденсаторе достигнет уровня, при котором на базе Q1 появится открывающий положительный потенциал. Нарастающее напряжение на базе Q1 плавно открывает транзистор, и напряжение на его коллекторе начинает понижаться. В коллекторной цепи Q1 включен делитель на резисторах R2 и R3, средняя точка которого подсоединена к базе Q2. Понижение напряжения на коллекторе Q2 через R3 передается на базу Q2, открывая его. Собственное сопротивление транзистора Q2 уменьшается, положительное напряжение на его коллекторе начинает расти. Если источник перегрузки вторичной цепи не устранен, то рост напряжения на базе Q2 приведет к полному его открыванию и переключению транзистора в насыщение. Напряжение на аноде диода D4 будет равно опорному, имеющему значение +5 В, за вычетом падения на открытом транзисторе Q2. Через открытый диод D4 напряжение опорного источника поступает на вывод TL494/4, где его уровень будет составлять примерно +3,9 В. Это значение превышает максимальный уровень пилообразного напряжения, поэтому формирование импульсного сигнала на выходах ШИМ преобразователя будет блокировано. Импульсы возбуждения не будут подаваться на усилитель мощности, передача энергии через импульсный силовой трансформатор во вторичную цепь прекратится. Постепенно произойдет спад всех вторичных напряжений до нулевого уровня. Возобновление работы преобразователя возможно только после переключения сетевого выключателя и нормальной генерации импульса начального питания ШИМ преобразователя.
Аналогичное воздействие на транзисторные каскады схемы защиты будет вызвано резким падением уровня любого из каналов с отрицательными номиналами напряжений, подключенных к схеме через диод D3 и резистор R7. Принцип действия узла защиты от КЗ по слаботочным каналам основан на функционировании вентильной схемы, основным элементом которой является диод D2. Диод включен между датчиками уровней напряжений отрицательных уровней и базой транзистора Q1. Катоды диодов D2 и D5 соединены по схеме «монтажного ИЛИ». Переключение транзисторных ключей на Q1 и Q2 будет выполняться, если в точке соединения диодов появится потенциал, достаточный для открывания транзистора Q1. При нормальной работе основных каналов, когда ширина импульсов управления укладывается в допуск, такое напряжение может быть подано только через диод D2. Уровень напряжения на аноде D2 определяется соотношением сопротивлений резисторов R6 и R5. В точке соединения резистора R7 и диода D3 напряжение имеет значение -5,8 В. Резистор R5 одним выводом подключен к источнику опорного напряжения микросхемы TL494 с номинальным уровнем +5 В, вторым – к аноду D2. Для того чтобы на катод диода D2 не поступало положительное напряжение, потенциал на аноде D2 должен быть нулевым или отрицательным. Для большей чувствительности схемы защиты потенциал выбирается именно нулевым. Для поддержания нулевого уровня на аноде диода D2, у резистора R6 должно быть сопротивление на 15 % больше, чем у R5. В установившемся режиме, когда все напряжения имеют номинальный уровень, элементы, соединенные с D2, не влияют на состояние ключевой транзисторной схемы. Если в нагрузочной цепи каналов -5 или -12 В возникает ситуация, при которой происходит значительное падение уровней этих напряжений, происходит перераспределение напряжений в делителе из R5 и R6. Отрицательный потенциал, компенсирующий положительное напряжение опорного источника, в точку соединения этих резисторов поступать не будет. На анод D2 будет проходить только положительное напряжение через R5, которым последовательно откроются диод D2, а затем оба транзисторных ключа на Q1 и Q2. Это приведет к появлению напряжения +3,9 В на выводе 4 микросхемы TL494 и вызовет блокировку ШИМ преобразователя и отключение источника питания.
В заключение описания схемы, приведенной на рис. 3.16, следует отметить, что диоды D1, D2 и D5 выполняют функции элементов развязки и исключают взаимное влияние формируемых датчиками напряжений, возникающих при различных перегрузках источника питания.
Один из вариантов узла полной защиты источника питания по основным каналам вторичных напряжений представлен на рис. 3.17.
Главная особенность данной схемы в том, что из нее полностью исключены элементы, используемые в каскадах защиты слаботочных каналов с отрицательными уровнями напряжений. Узел состоит из датчиков ширины импульсов управления и датчиков повышения уровней напряжений по каналам +5 В и +12 В. Оценка функционирования маломощных каналов может производиться по ширине импульсов. Такое схемотехническое решение может быть использовано в источнике питания, где применена дополнительная стабилизация вторичных каналов отрицательных напряжений. Интегральные стабилизаторы имеют внутренние схемы ограничения выходного тока в случае возникновения перегрузок. Включение защиты интегрального стабилизатора может быть вызвано также перегревом корпуса стабилизатора.
При получении сигнала об отклонении работы преобразователя от номинального режима схема защиты вырабатывает сигнал положительного уровня, который подается на вывод 4 микросхемы TL494. Остальные внутренние элементы ШИМ преобразователя для его блокировки не используются. Формирование сигнала о нарушении рабочего режима производится двухкаскадным усилителем на транзисторах Q1 и Q2. В исходном состоянии оба транзистора закрыты. Напряжение на выводе 4 схемы TL494 задается соотношением сопротивлений резистивного делителя из R10 и R11. Сопротивление резистора R10 значительно больше, чем у R11, поэтому в установившемся режиме, в отсутствие перегрузки, напряжение на TL494/4 близко к потенциалу общего провода.
В качестве датчика ширины импульсов управления используется трансформатор T1 и элементы R3, VD4 и C4. Первичная обмотка трансформатора T1 включена в диагональ полумостового усилителя мощности последовательно с первичной обмоткой силового импульсного трансформатора Т2. К вторичной обмотке трансформатора T1 подключена выпрямительная схема с однополупериодным выпрямителем на диоде D4 и емкостным фильтром – конденсатором C4. На конденсаторе C4 выделяется положительное напряжение, пропорциональное длительности импульсов управления. К резистору R11 кроме сопротивления R10 присоединена цепь, состоящая из резисторов R4, R6 и диода D6. Параметры резисторов R4 и R6 подобраны так, чтобы колебания напряжения на конденсаторе C4 не влияли на уровень напряжения на резисторе R11. Анод диода D6 соединен с коллектором транзистора Q4 и через резистор R9 с базой транзистора Q3, являющегося первым ключевым элементом в цепи формирования сигнала блокировки микросхемы TL494. Прежде чем положительное напряжение на аноде D6 нарастет до уровня его отпирания, оно постепенно откроет транзистор Q3. Коллектор транзистора Q4 соединен через резистор R9 с базой Q3, поэтому изменение напряжения на коллекторе первого транзистора будет сразу передаваться на базу второго. Повышение напряжения в этой точке может быть следствием увеличения нагрузки вторичных цепей и расширением положительных импульсов управления. Постепенное открывание транзистора Q3 сопровождается понижением его коллекторного напряжения и потенциала базы Q4. Передача положительного напряжения происходит через открывающийся транзистор Q4 на базу Q3. Один транзистор подпитывает базу второго, процесс открывания обоих активных элементов развивается лавинообразно, и в итоге приводит к полному открыванию двух транзисторов. Через насыщенный транзистор Q4, диод D4 и резистор R11 протекает ток. Уровень напряжения, который устанавливается после открывания Q4 на резисторе R11, составляет примерно +3,9 В. Это напряжение превышает амплитуду пилообразного сигнала, действующего на инвертирующем входе внутреннего компаратора «мертвой зоны» DA1, входящего в состав микросхемы TL494. Происходит блокировка пилообразного напряжения на этом компараторе и остановка генерации импульсов на выходах микросхемы ШИМ преобразователя. Такая последовательность действий осуществляется при увеличении нагрузки источника питания, когда система управления стремится компенсировать падение выходных уровней напряжений, увеличивая интервал активного состояния силовых транзисторов.
Цепи на элементах D1 – D3, R1 и R2 выполняют функции детекторов увеличения напряжений основных вторичных каналов выше установленного предела. К выходам каналов с напряжениями +5 и +12 В подключены пороговые схемы на стабилитронах D1 и D3 соответственно. В данном случае используется свойство стабилитронов пропускать электрический ток, когда напряжение на них превышает уровень стабилизации. Пока напряжения на стабилитронах будут ниже уровня стабилизации, ток через них протекать не будет и на положительной обкладке конденсатора C5 потенциал останется близким нулю. Диод D5 закрыт и никакого воздействия на базу транзистора Q3 не оказывается. Пороговый уровень включения защитного механизма по вторичному каналу +5 В составляет +6,3 В. Фиксация возрастания напряжения выше номинального значения по каналу +12 В должна производиться на уровне примерно +15 В. Напряжение стабилизации D1 составляет +5,1 В, а диода D3 – + 14 В. Если одно из положительных напряжений вторичных каналов достигает своего предельного уровня, то происходит «пробой» соответствующего стабилитрона и напряжение на конденсаторе C5 начинает повышаться, открывая диод D5. Отпирание диода и появление положительного потенциала на базе Q3 происходит, когда на конденсаторе C5 напряжение достигает положительного уровня, равного 0,7–0,8 В. Если напряжение продолжает повышаться, то растет положительный уровень и на базе Q3. Выполняются условия для переключения бистабильной транзисторной схемы на ключах Q3 и Q4. Каждый из транзисторов открывается, и на вывод 4 микросхемы TL494 подается положительное напряжение +3,9 В, появление которого вызывает прекращение работы импульсного преобразователя.
Для устойчивой работы схемы защиты в базовую цепь транзистора Q3 включен керамический конденсатор C6. Он обеспечивает фильтрацию кратковременных импульсных помех, которые могут привести к переключению транзисторной схемы. В начальный момент, когда преобразователь подключает схему управления к напряжению питания, благодаря наличию конденсатора С5 происходит задержка включения транзисторного каскада. Диод D5 применяется для развязки каскадов, вырабатывающих сигналы воздействия на базу Q3 при различных проявлениях отклонения вторичных напряжений от номинальных уровней.
Во всех примерах схем защиты датчики и схемы воздействия на элементы управления преобразователем строились на основе дискретных элементов. В следующих примерах приведены схемы, в которых в качестве первичных узлов, формирующих сигналы отключения ШИМ преобразователя, применяются интегральные компараторы. Первая из схем приведена на рис. 3.18 (вариант 4).
На схеме (рис. 3.18) показаны узлы, рассмотренные нами и в предыдущих вариантах исполнения каскадов защиты. Схема осуществляет контроль за длительностью управляющих импульсов, за коротким замыканием по каналам с отрицательными номиналами напряжений, а также слежение за превышением установленного уровня напряжения в канале +5 В. Взаимодействие с микросхемой ШИМ управления – TL494 выполняется только по входу 4. Использование внутреннего усилителя DA4 для принудительного ограничения ширины импульсов управления не предусмотрено. В каскаде защиты используется два компаратора DA1 и DA2 из микросхемы типа LM339, выходы которых объединены по схеме «монтажного ИЛИ». В установившемся режиме оба выхода имеют высокий уровень. Транзистор Q1 при этом закрыт, а напряжение на выводе TL494/4 определяется падением напряжения на резисторе R14, вызванным протеканием через него входного тока.
Датчик контроля длительности импульсов управления (трансформатор T1 и элементы D3, D4, R10, R7 и C1) введен в первичную цепь преобразователя. Первичная обмотка трансформатора T1 включена в диагональ полумостового усилителя. Через эту обмотку протекает тот же ток, что и через первичную обмотку силового импульсного трансформатора T2. Форма сигнала на T1 полностью совпадает с импульсами управления преобразователем. Трехуровневый импульсный сигнал появляется на вторичной обмотке трансформатора T1. Вторичная обмотка имеет три вывода. Со среднего вывода снимается сигнальное напряжение. Крайние выводы обмотки подключены к катодам диодов D3 и D4 двухполупериодного выпрямителя. Аноды диодов соединены с общим проводом вторичной цепи. На среднем выводе обмотки W2 присутствуют импульсы положительной полярности. Частота следования импульсов в этой точке в два раза превышает частоту следования импульсов по каждому из выходов микросхемы TL494. Импульсное напряжение сглаживается RC фильтром на элементах R7 и C1. Уровень напряжения на конденсаторе C1 зависит от длительности импульсов управления преобразователем. Повышение нагрузки вторичных цепей автоматически приводит к росту этого напряжения. Конденсатор C1 подключен к одному из выводов резистора R4. Второй вывод резистора R4 через диод D1 подсоединен к шине вторичного напряжения канала +5 В. Резистивным делителем, образованным элементами R4 – R6, задается уровень на инвертирующем входе компаратора DA1/4, входящего в состав микросхемы типа LM339. Компаратор производит сравнение этого напряжения с потенциалом на DA1/5, установленным резистивным делителем на R8, R9. Делитель включен между выходом опорного напряжения, вырабатываемого микросхемой TL494 на выводе 4, и общим проводом вторичной цепи. Средняя точка делителя присоединена к неинвертирующему входу компаратора DA1/5. На резисторе R4 происходит суммирование части вторичного напряжения от канала +5 В и напряжения, поступающего от датчика ширины импульсов управления, на трансформаторе T1. Сумма напряжений делится пропорционально величинам сопротивлений резисторов R5 и R6. Точка соединения этих резисторов подключена к входу компаратора DA1/4. При нормальном рабочем режиме источника питания уровень опорного напряжения на входе DA1/5 несколько больше, чем на входе DA1/4. Напряжение на выходе компаратора близко по значению к опорному. Повышение одного из напряжений, суммируемых на R4, вызовет пропорциональное возрастание потенциала на DA1/4. Когда напряжение на инвертирующем входе компаратора станет больше, чем на другом его входе, произойдет быстрое переключение компаратора. На выходе установится низкий уровень. Нагрузкой, соединенной с выходами компараторов, являются последовательно соединенные резисторы R11 и R12. К точке их соединения присоединена база транзистора Q1. Когда происходит переключение выхода компаратора от высокого уровня к низкому, база Q1 оказывается под открывающим потенциалом. Транзистор Q1 открывается, напряжение на его коллекторе повышается. Возрастающее напряжение с коллектора Q1 подается через диод D5 на вход компаратора DA2/8. Повышение напряжения на входе компаратора DA2/8 вызывает его переключение. С этого момента выходы обоих компараторов имеют низкие уровни. Высокий уровень напряжения на выводе TL494/4 приводит к отключению ШИМ преобразователя в соответствии с описанной выше последовательностью действий внутри TL494. Начальное переключение компаратора DA1 происходит либо при повышении выходного уровня во вторичном канале +5 В, либо из-за увеличения нагрузки по основным вторичным каналам сверх установленного предела. Компаратор DA1 совмещает в себе функции вторичного датчика уровня напряжения в канале +5 В и длительности импульсов управления усилителем мощности.
На втором компараторе микросхемы LM339 собран ключевой элемент, выполняющий слежение за состоянием каналов с отрицательными номиналами напряжений. В нормальном состоянии делителями напряжений на входах устанавливаются потенциалы, при которых выходной уровень напряжения компаратора – высокий (напряжение на DA2/9 больше, чем на DA2/8). Резисторами делителей, подключенных к входам компаратора DA2, выбирается порог чувствительности схемы. Малой разницей напряжений на входах обеспечивается быстрое переключение компаратора, но схема может быть слишком чувствительна к случайным кратковременным помехам. Исходная разность потенциалов по входам выбирается ~1 В. Опорный уровень на входе DA2/9 формируется из опорного напряжения, вырабатываемого на выходе TL494/14. Когда происходит КЗ по одному из контролируемых каналов, напряжения на входах компаратора перераспределяются, в результате знак разности их потенциалов изменяется. Происходит переключение компаратора с последующим открыванием транзистора Q1. Открытый Q1 представляет собой малое сопротивление, через которое анод диода D5 подключается к опорному напряжению. Диод D5 используется как элемент обратной связи между входом DA2/8 и выходом схемы защиты – коллектором Q1. Положительный потенциал от коллектора Q1 передается на инвертирующий вход компаратора DA2, еще более увеличивая разность потенциалов между его входами. Система защиты после переключения компаратора и транзистора Q1 приходит в равновесное состояние. Вывести систему защиты из состояния блокировки микросхемы TL494 можно только переключением первичного напряжения питания и выполнения полного цикла начальной инициализации всей схемы источника питания.
На рис. 3.19 представлена комплексная схема защиты источника питания, последняя в данном подразделе, на которой компоненты узла защиты изображены полностью, а схемы включения полумостового усилителя мощности и ШИМ преобразователя – микросхемы TL494 – условно.
Схема реализует самый полный комплекс мер по защите элементной базы источника питания. Данный каскад защиты реагирует на увеличенное потребление энергии по основным каналам вторичных напряжений, чрезмерное возрастание уровня напряжения в канале +12 В, а также на КЗ по всем вторичным каналам. Ни в одной из схем защиты не рассматривался вариант, содержащий отдельные датчики, настроенные на контроль превышения уровня вторичного напряжения для канала +5 В. Основная нагрузка, как правило, подключается именно к выходу этого канала и функции слежения за значением его напряжения возложены на узлы микросхемы TL494. При рассмотрении работы функциональных узлов этой микросхемы будут использованы обозначения, принятые на рис. 2.7.
Управление длительностью импульсов управления усилителя мощности может выполняться как с помощью усилителя DA3, так и по сигналам DA4. Принципиальной разницы нет, но традиционно (что видно по всем приведенным примерам) сигнал рассогласования вырабатывается усилителем DA3, а усилитель DA4 используется в составе схемы защиты для принудительного ограничения длительности импульсов управления и блокировки ШИМ преобразователя. В схеме, представленной на рис. 3.19, слежение за выходным уровнем этого канала выполняется с помощью операционного усилителя DA3, входы которого выведены через выводы TL494/1 и TL494/2. Выходы усилителей соединены через развязывающие диоды. При нормальном режиме работы источника питания на выходе усилителя DA4 установлено нулевое напряжение, и оно не оказывает влияния на сигнал, действующий на выходе усилителя DA3. Усилитель DA4 не охвачен обратной связью, поэтому его работа аналогична функционированию компаратора – выход этого усилителя может иметь только два состояния: низкого и высокого уровней. Процесс перехода из одного состояния в другое происходит достаточно быстро. При низком уровне на выходе DA4 диод D2 закрыт, а при высоком уровне этот диод открывается. Выходной уровень усилителя зависит от соотношения напряжений на выводах TL494/16 и TL494/15, через которые подводятся входные сигналы к усилителю DA4. В схеме, приведенной на рис. 3.19, вывод TL494/16 подключен к общему проводу вторичной цепи. На вход TL494/15 подведено напряжение от делителя на резисторах R24 и R25. Резисторы делителя запитываются от датчика ширины импульсов управления (подводится к точке соединения R24 и R25) и источника напряжения, подключенного между выходом вторичного канала +5 В и выводом TL494/14. От датчика длительности импульсов управления на делитель поступает отрицательное напряжение, которое формируется на конденсаторе C7, куда оно подается от датчика, выполненного на трансформаторе T1. Во вторичной цепи трансформатора включен двухполупериодный выпрямитель, с помощью которого выделяются импульсы отрицательной полярности. Импульсный сигнал сглаживается фильтром, состоящим из резистора R23 и конденсатора C7. Соотношение резисторов R24 – R27, подключенных к входу TL494/15, выбрано так, чтобы в режиме нормальной работы напряжение на этом выводе было положительным. Этим обеспечивается установка нулевого уровня на выходе DA4. При возникновении перегрузки и расширении импульсов управления силовым каскадом отрицательное напряжение на конденсаторе C7 начинает повышаться. Рост отрицательного напряжения приводит к снижению положительного потенциала на выводе TL494/15. Когда напряжение на этом выводе уменьшится до нулевого уровня, усилитель DA4 переключится и на его выходе появится высокое напряжение. Его значение превышает выходной уровень усилителя DA3, диод D1 оказывается закрытым, а выход DA3 блокированным. Переключение DA4 протекает быстро и проходит через стадию, в течение которой таким нарастающим напряжением вызывается принудительное ограничение длительности выходных импульсов ШИМ преобразователя. Перед полной блокировкой ширина импульсов плавно, но достаточно быстро уменьшается до нуля. Генерация импульсов прекращается, ритмичное переключение силовых транзисторов останавливается. Передача энергии через импульсный трансформатор отсутствует, вторичные цепи обесточиваются.
С помощью усилителя DA4 в схеме защиты выполняется слежение только за длительностью импульсов управления. Остальные функциональные узлы контроля состояния вторичных цепей воздействуют на микросхему TL494 через неинвертирующий вход внутреннего компаратора мертвой зоны DA1, соединенный с выводом 4 этой микросхемы.
К выводу TL494/4 подключены схемы «медленного» запуска, выход схемы защиты и каскад, шунтирующий схему защиты в течение инициализации узлов источника питания. «Медленный» запуск обеспечивается за счет применения дифференцирующей цепи на конденсаторе C2 и резисторе R14. Выходным активным элементом системы защиты является транзистор Q2. К его коллектору по схеме «монтажного ИЛИ» подключен ключевой транзистор Q1. К базе этого транзистора подсоединен резистивный делитель R7 и R8. Верхний по схеме резистор R7 делителя через конденсатор C1 соединен с шиной питания микросхемы TL494. Когда на этой шине появляется питающее напряжение, на базе транзистора Q1 возникает положительный импульс. Положительным импульсом транзистор Q1 открывается, и в течение времени перезарядки конденсатора C1 на его коллекторе поддерживается напряжение, близкое к потенциалу общего провода. Вторичные напряжения нарастают с задержкой относительно всех напряжений питания каскадов защиты и микросхемы ШИМ управления – TL494. Благодаря работе транзистора Q1, в начальный момент исключается возможность появления положительного потенциала на входе TL494/4. Только после появления нормальных уровней в цепях вторичных каналов транзистор Q1 переключается и остается в закрытом состоянии до конца рабочего цикла источника питания. Закрытый транзистор не мешает работе выходного каскада системы защиты на Q2.
Рабочее состояние источника питания сохраняется до тех пор, пока на коллекторе Q2 не появится положительный потенциал, который через диод D4 передается на вход TL494/4. С появлением этого напряжения прекращается функционирование импульсного преобразователя. Положительное напряжение достаточного уровня для блокировки микросхемы TL494 будет присутствовать на коллекторе Q2, если он окажется в закрытом состоянии. База транзистора Q2 постоянно подключена к общему проводу, поэтому для поддержания его в проводящем состоянии на эмиттере должен быть установлен потенциал, равный примерно -0,7… -0,8 В. Для формирования такого напряжения используется схема, состоящая из элементов D9, R21, R22, R13 и D6. На диоде D9 и резисторе R22 собран датчик фиксации КЗ, а на стабилитроне датчик превышения уровня напряжения по каналу +12 В. Если уровни напряжений по выходам отрицательных каналов нормальны, то в точке соединения диода D9 и резистора R22 напряжение составляет -5,8 В. Делителем напряжения, состоящим из резисторов R13 и R21, на эмиттере транзистора Q2 устанавливается напряжение -0,7.
– 0,8 В. Пока уровень напряжения в канале +12 В находится в допустимых пределах, наличие стабилитрона D6 на работу транзисторного каскада на Q2 влияния не оказывает. Переключение транзистора Q2 может произойти только в случае резкого падения уровня любого из вторичных каналов с отрицательными номиналами напряжений. При этом напряжение на катоде диода D9 приблизится к потенциалу общего провода, что также отразится на уровне напряжения на эмиттере Q2. Транзистор закроется, и напряжение опорного источника от TL494/14 через диод D4 поступит на вход TL494/4. Второе условие, которое окажется достаточным для увеличения положительного потенциала на эмиттере Q2, – рост напряжения по каналу +12 В выше уровня стабилизации стабилитрона D6, которое составляет 15 В. Если это условие выполняется, то, несмотря на нормальное состояние напряжений по отрицательным каналам, потенциал на эмиттере Q2 будет нулевым или даже положительным. Транзистор закроется, и далее заблокируется микросхема TL494.