Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №10
Шрифт:

РИСУНОК 33. Расположение главных палеофлористических областей в позднем палеозое при (б). А — Ангарская, Е — Еврвмерийская, К — Катазиатская и Г — Гондванская области (на юге).

Причины климатических различий, существовавших в позднем палеозое между Еврамерией и Катазией, с одной стороны, и Гондваной и Ангаридой — с другой, кажутся вполне очевидными: первые располагались на тогдашнем экваторе, а вторые — вблизи полюсов (рисунок 33, б). Представьте-ка себе, что мы попытаемся экстраполировать на всю нынешнюю Землю картину амазонских джунглей!.. Однако здесь сразу же возникает встречный вопрос: а всегда ли на Земле существовала широтная климатическая зональность, сходная с нынешней? Для ответа

логично обратиться к сопоставлению высоко- и низкоширотных флор соответствующих эпох прошлого (учитывая при этом иное, чем теперь, расположение материков относительно полюса).

Картина эволюции растительности от девона до наших дней выяснена (в общих чертах) достаточно давно. Для наиболее молодых, кайнозойских, флор установлена ясная климатическая зональность, хотя и отличная от нынешней (на арктических островах росли деревья, характерные ныне для зоны широколиственных лесов — например, каштаны и платаны). Мезозойские флоры существенно более однообразны по всей Земле. Сложнее ситуация с палеозоем. Пермские и позднекарбоновые флоры Европы и Северной Америки, как уже было сказано, сходны с китайскими, но резко отличны и от сибирских, и от флор всех материков Южного полушария. Но ниже по геологическому разрезу — в раннем карбоне и далее, в девоне, мы снова сталкиваемся с единством флор различных материков. Отсюда можно заключить, что климатическая зональность была минимальной в девоне и начале карбона, затем усилилась в позднем палеозое, снова ослабла в мезозое, а потом опять начала усиливаться, достигнув ныне своего максимума.

Мы с вами помним, что в верхнепалеозойских слоях всех гондванских материков найдены ледниковые отложения — тиллиты (которые послужили одним из отправных пунктов в построениях Вегенера); следы оледенений найдены и в одновозрастных отложениях Ангариды. А вот за изъятием этого отрезка времени (поздний карбон — ранняя пермь) и современности климат в высоких широтах был если и не жарким, то во всяком случае безморозным: в раннем карбоне и Европы, и Шпицбергена, и Сибири найдены толстые, явно многолетние стволы плауновидных с маноксилической древесиной[41], а в эоцене острова Элсмир (Канадский архипелаг) — крокодилы. Современная климатическая картина с крупными полярными шапками из снега и льда — скорее исключение, чем правило в геологической истории. Так что следует искать ответа не на вопрос, почему в раннем карбоне и в мезозое не было полярных шапок, а на вопрос, отчего они иногда образовывались (и меняли весь климат планеты). Периоды существования такого контрастного климата с холодными полюсами, как в позднем палеозое и позднем кайнозое, называют криоэрами ("криос" — по-гречески холод), а выровненного по всей Земле (как в мезозое) — соответственно, термоэрами. Общее количество тепла, получаемое Землей от Солнца, считается достаточно постоянным во все времена; здесь существует своя циклика (см. главу 14), но расстояние-то между ними неизменно. Следовательно, дело в основном в распределении этого тепла по поверхности планеты, прежде всего — в характере и интенсивности теплопереноса от экватора к полюсам.

Для начала, как водится, несколько общих замечаний. Поскольку планета шарообразна, солнечные лучи всегда будут, при прочих равных, нагревать ее экватор сильнее, чем полюса — экваториально-полярный температурный градиент; любой градиент стремится к выравниванию (просто по Второму закону термодинамики) — в нашем случае за счет постоянного теплообмена между низкими широтами и высокими. Теплообмен этот осуществляется посредством конвекции в обеих подвижных оболочках Земли — гидросфере и атмосфере.

Конвекция в гидросфере — это теплые морские течения, которые обогревают высокоширотные области точно так же, как водяное отопление — ваши квартиры. Движущей силой конвекционных токов, как мы помним из главы 2 (о мантийной конвекции), являются возникающие в среде архимедовы силы плавучести: когда часть вещества "тонет" или "всплывает", этот объем — в силу связности среды — замещается веществом, поступающим из другой ее точки. В нашем случае токи в Мировом океане могут возникать за счет того, что "тонет" либо холодная (четырехградусная) вода в высоких широтах (термическая циркуляция), либо избыточно осолоненная (в результате испарения) вода на экваторе (галинная циркуляция). При термической циркуляции вода движется от экватора по поверхности, а от полюсов — по дну (формируя при этом холодную насыщенную кислородом психросферу), а при галинной — наоборот (рисунок 34, б).

РИСУНОК 34. Циркуляция в атмосфере и гидросфере: схема термической и галинной циркуляции в океанах: (а) — криоэра, (б) — термоэра.

Говоря о конвекции в атмосфере, необходимо учитывать, что здесь тепло переносится главным образом водяным паром: тепловая энергия, затраченная на испарение воды, выделяется там, где этот пар, перенесенный воздушными течениями, превратится обратно в жидкость — то есть выпадет в виде осадков. Атмосфера каждого из полушарий распадается на три широтных сегмента[42] — конвективные ячейки: экваториальная, умеренных широт и приполярная. В каждой из ячеек существует относительно замкнутая воздушная циркуляция, причем направления циркуляции в граничащих между собой ячейках противоположны ("по часовой стрелке" — "против" — опять "по") — в точности, как в цепи шестеренок (рисунок 34, а). В одной половине ячейки доминируют восходящие токи, во второй — нисходящие; соответственно, влага, испаряющаяся в первой половине, выпадает главным образом во второй — и при этом происходит разгрузка теплоты парообразования. Например, в экваториальной ячейке Северного полушария ток направлен от севера к югу, так что в южной ее половине возникают влажные тропические леса, а в северной — засушливые саванны; в ячейке же умеренных широт, где направление тока обратное, пустыни возникают на юге, а субтропические и широколиственные леса — на севере. Другим фактором атмосферной конвекции (главным образом широтным) являются муссоны — сезонные ветры постоянного направления, дующие с океана на континент или обратно; с муссонами связано, среди прочего, чередование сухого сезона и сезона дождей в тропических широтах, где температура весь год постоянна.

Так вот, возвращаясь к крио- и термоэрам. Ныне (как, видимо, и вообще в криоэрах) основной приток тепла в высокие широты осуществляется мощными теплыми течениями вроде Гольфстрима. При этом возникает температурная аномалия: океан в районе 60-х широт существенно (почти на 20 градусов!) теплее, чем следовало бы из соображений геометрии планеты. Однако это обстоятельство имеет и оборотную сторону: на материке развивается мощный зимний антициклон (область высокого давления) с температурами на 20 градусов ниже, чем следовало бы. Из антициклона "вытекает" холодный сухой воздух, тогда как встречный ток теплого воздуха лишь "приподнимает верхушку" антициклона — то есть тепловая энергия расходуется на механическую работу против силы тяжести. В итоге континентальные антициклоны работают как мощные всепланетные холодильники (влияние Сибирского антициклона ощущается далеко на юге и приводит к холодным зимам не только в Приморье, но и в Китае, и даже во Вьетнаме), которые ослабляют муссоны и не дают им продвинуться сколь-нибудь далеко в полярном направлении. Теплые воды отводятся из эваториальной зоны столь быстро, что практически не успевают осолониться за счет испарения, так что галинная составляющая океанской циркуляции по сравнению с термической пренебрежимо мала; в атмосфере существуют упомянутые выше три ячейки. Ситуация может быть кратко охаректеризована так: "Водный теплоперенос — теплые океаны — холодные материки".

В термоэры (в частности, в мезозое) ситуация, судя по всему, была принципиально иной. А.Г. Пономаренко (1996), предложивший соответствующую модель, обращает внимание на два обстоятельства, кажущиеся необъяснимыми с нынешних позиций. Во-первых, приполярные области были очень теплыми (исходя из состава их фауны и флоры), что требует куда более интенсивного, чем ныне, теплопереноса от экватора к полюсу. Во-вторых, в тогдашней экваториальной зоне (где ныне находятся дождевые тропические леса) растительность была явно ксерофильной и возникали эвапориты — отложения, являющиеся показателем аридных (пустынных) условий.

При отсутствии полярных шапок температура океанической воды не падает до 4 °, когда ее плотность максимальна, и не происходит полного опускания поверхностных вод. Компенсирующие такое погружение мощные теплые течения не возникают; теплая вода из экваториальной зоны практически не отводится, она осолоняется за счет испарения и погружается на дно — галинная циркуляция здесь резко доминирует над термической. Поверхностные слои океанов в умеренных широтах относительно холодны, и температурного контраста между океанами и материками не возникает; не возникает и зимнего антициклона, так что ничто теперь не мешает муссону переносить теплый воздух и водяной пар чуть ли не до самого полюса.

Если в криоэрах в каждом из полушарий существуют три атмосферные ячейки и единственная (термическая) океанская, то в термоэрах ситуация, похоже, была как бы зеркальной. В атмосфере существует единственная ячейка, в которой происходит прямой перенос тепла и влаги из приэкваториальных областей в приполярные; это хорошо объясняет упомянутый выше парадокс с располагающимся на экваторе аридным поясом[43]. В гидросфере, напротив, существуют две ячейки, причем в экваториальной ячейке циркуляция идет по галинному типу, а в высокоширотной — по термическому. В зоне соприкосновения гидросферных ячеек, где водные массы движутся друг навстречу другу, должны возникать апвелинги[44]; подтверждением тому служит распространение по этой предполагаемой границе обогащенных органикой черносланцевых формаций, которые отлагаются в избыточно-продуктивных морских акваториях.

Поделиться:
Популярные книги

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

Дайте поспать! Том IV

Матисов Павел
4. Вечный Сон
Фантастика:
городское фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать! Том IV

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник