Интернет-журнал "Домашняя лаборатория", 2007 №2
Шрифт:
Перечислим основные проблемы физики планетных колец:
1. Почему существуют планетные кольца? Классические модели формирования колец предполагали, что кольца — это область приливного разрушения крупных тел. Но после полетов «Вояджеров» стало ясно, что для разрушения частиц наблюдаемых размеров (<10 м) приливные силы слишком слабы. Вопрос о причинах существования колец оказался прямо связан с механическими характеристиками типичной частицы.
2. Что вызвало расслоение колец Сатурна? Наблюдаемая иерархическая структура колец Сатурна составлена по принципу «матрешки»: широкие ~ 1000 км кольца состоят из системы более узких -100 км колец и т. д.
Распространенное мнение, что расслоение колец Сатурна связано только с неустойчивостью
3. Как образовались и почему не разрушаются кольца Урана? Наиболее популярна гипотеза о том, что узкие, эллиптические кольца Урана сформировались и сохраняют стабильность, благодаря двум спутникам-«пастухам» по краям каждого кольца. Однако «Вояджер-2» в 1986 г. не обнаружил между кольцами Урана столь необходимых для этой гипотезы спутников-«пастухов». При этом данные «Вояджера-2» подтвердили альтернативную гипотезу о резонансной природе колец Урана. В настоящее время в физике планетных колец существует большое число моделей и гипотез, часто взаимоисключающих друг друга. Поэтому представить единую картину происхождения и динамики планетных колец довольно трудно. Например, ряд исследователей устойчивости планетных колец исходит из модели гладкой и весьма упругой ледяной частицы, не затрагивая при этом проблемы существования колец. Космогонисты, в свою очередь, рассматривают в качестве типичной частицы колец чрезвычайно эфемерное образование (в 10 тысяч раз менее прочное, чем скопление самого пушистого земного снега), не задумываясь о том, как будет «работать» такая непрочная частица в других теоретических моделях.
Для того, чтобы дать физически цельную картину планетных колец, критически исследуя и альтернативные решения ряда проблем, приходится обращаться к самым различным методам и областям науки: к небесной механике, к физике льда и снега, к теории удара, к кинетической теории газов, к теории неустойчивостей и физике плазмы.
Источник: Н.Н.Горьковатый, А.М.Фридман «Самоорганизация в кольцах планет», журнал «Природа», 1991, № 1, стр.56–68.
Подробнее в обзорах:
Д.Н.Кузи, Л.У.Эспозито «Кольца Урана», журнал «В мире науки», 1987, № 9, стр.26–33.
Н.Н.Горьковатый, А.М.Фридман «Физика планетных колец», журнал «Успехи физических наук», 1990, № 2, стр.169–238.
• ВОПРОС № 43: Как образуются сосульки на крышах, и с чем это связано?
ОТВЕТ: Сосульки, свисающие с карнизов и проводов, могут показаться достаточно простыми «конструкциями», однако на самом деле их форма и процесс образования в течение долгого времени озадачивали исследователей. Почему сосулька имеет вид усеченного конуса с диаметром у вершины не более нескольких миллиметров? Почему по оси сосульки проходит узкая заполненная жидкой водой полость длиной несколько сантиметров, берущая начало у кончика сосульки (в этом вы можете убедиться с помощью зубочистки)? Что эта за белая линия, отмечающая центральную ось сосульки? Почему на поверхности сосульки образуются поперечные ребра с интервалом несколько сантиметров? Почему местами в сосульке лед сплошной, а местами — пористый? Какая причина заставляет некоторые сосульки изгибаться и скручиваться?
Физические процессы, идущие при замерзании воды, весьма сложны. В рамках простой модели граница замерзания, разделяющая жидкость и лед, состоит из разветвленных «пальцев», которые проникают в жидкость. На поверхности этих пальцев молекулы жидкости постепенно присоединяются к кристаллической решетке льда, отдавая часть своей энергии и теряя подвижность. Потерянная ими энергия,
Этот процесс и ведет к росту сосульки. Один из путей их образования был изучен Н.Маено и Т.Такохаси из Университета Хоккайдо. Вообразите медленно тающий слой снега на крыше. Каждая свисающая с края капля талой воды окружена холодным воздухом. Когда по краям капля начинает замерзать и образуется тонкая оболочка льда, теплота, выделяющаяся в результате замерзания воды, уходит в окружающий воздух.
По мере того как вода продолжает стекать вниз по ледяной оболочке, часть ее замерзает, и народившаяся сосулька начинает расширяться. Остальная вода присоединяется к свисающей капле. Постепенное замерзание воды по краям капли приводит к расширению сосульки. Если капля становится слишком большой — более 5 мм в диаметре — она падает, однако вскоре талая вода образует новую каплю. Пока существует приток талой воды, сосулька расширяется и удлиняется. Кончик же сосульки, диаметр которого определяется размером свисающей капли, остается узким.
Г.Хатекеяма из Токийской метеорологической обсерватории и С.Немота из Метеорологического института в Токио описали другой путь образования сосульки. Верхняя часть начальной капли может замерзнуть целиком, при этом возникает горизонтальная поверхность замерзания, которая движется вниз. Если воды поступает мало, а крыша холодная, вода может замерзать во всем объеме капли, а не только в тонкой ледяной оболочке. В результате вся конструкция в процессе того, как на кончике образуется и замерзает новая капля воды, поэтапно удлиняется. Если же воды поступает достаточно и капля подпитывается непрерывно, то на некоторых стадиях роста сосульки вода по краям капли будет замерзать и образовывать ледяную оболочку в соответствии со схемой Маено и Такохаси.
Если ледяная оболочка уже образовалась, жидкость внутри ее начинает замерзать медленнее. Согласно результатам Л.Макконена из Технического исследовательского центра в Зело (Финляндия), теплота, выделяющаяся в процессе замерзания внутренней области, передается через лед к верхней части сосульки (называемой «корнем»), а затем — к краю крыши. Теплопередача — процесс настолько постепенный, что внутренняя поверхность замерзания может двигаться вниз по центральной оси сосульки очень медленно; если поверхность замерзания достаточно удалена от корня, как это имеет место в сформировавшейся сосульке, она может даже остановиться.
В области, между поверхностью замерзания и кончиком сосульки жидкость, заключена в узкую ледяную полость. Несмотря на действие силы тяжести, жидкость находится в устойчивом состоянии, что частично объясняется поверхностным натяжением между жидкостью и стенками полости. Кроме того, полость эта настолько узка, что случайные возмущения на нижней границе столбика воды или в висящей капле бывают обычно недостаточными для того, чтобы позволить воздуху просочиться в полость и вытеснить жидкость. При нормальных зимних температурах внутренняя поверхность замерзания достигает кончика сосульки (и та полностью замерзает) только в том случае, если вода перестает поступать и рост сосульки прекращается.
Снаружи сосулька покрыта тонким слоем воды и как бы заключена в жидкие ножны. Замерзание на внешней поверхности раздела лед-жидкость происходит очень быстро, поскольку теплота, выделяющаяся при замерзании воды, быстро проходит через жидкую воду и передается воздуху. (Маено и Такохаси обнаружили, что жидкие ножны на активно растущих сосульках бывают не толще 0,1 мм). Температура на поверхности замерзания равна точке замерзания воды; последняя составляет 0 °C для чистой воды, но может быть ниже, если вода содержит примеси. Температура в остальном объеме жидкости несколько ниже точки замерзания (явление, известное как переохлаждение). Наиболее охлаждена вода, соприкасающаяся с воздухом, который, разумеется, может быть гораздо холоднее, чем вода.