Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:
Факторы от которых зависит электролиз
Эффективность электролиза оценивают рядом факторов, к которым относятся: сила тока, напряжение, плотность тока, КПД источника тока, выход по току, выход по веществу, коэффициент полезного действия электроэнергии (выход по энергии), расход электроэнергии на единицу полученного продукта.
Сила тока или нагрузка на электролизёр характеризуют его производительность. Чем выше сила тока, пропускаемого через электролизёр, тем больше продукта можно получить при эксплуатации данного электролизёра. Наблюдается тенденция к созданию мощных электролизёров, рассчитанных в некоторых случаях на десятки и сотни тысяч Ампер (производство
U = еа– еk + ?еа + ?еk + еэл.– едиафр. + еконт.
где: U — общее напряжение на ячейке; еа и еk — равновесные потенциалы анодной и катодной реакции; еэл и едиафр. падение напряжения в электролите и в диафрагме; еконт. — падение напряжения в контактах. Сумма еа– еk называется напряжением разложения. Эта величина соответствует расходу на электролиз электроэнергии, которая идёт непосредственно на изменение внутренней энергии веществ.
При электролизе стремятся к уменьшению напряжения на ячейке за счёт величины поляризации и омического состояния баланса напряжения, то есть слагаемых, обусловленных необратимостью процесса. Напряжение разложения обусловлено природой реагирующего вещества, а поэтому не может быть изменено. Значения ?еk и ?еа могут быть изменены в зависимости от характера электрохимической реакции, протекающей на электроде, путём перемешивания, повышения температуры электролита, изменения состояния поверхности электрода и за счёт ряда других факторов.
Падение напряжения в электролите, выражаемое уравнением R = pl/s, где р — удельное сопротивление электролита, Ом•см, l — расстояние между электродами, см (без учета диафрагмы), S — площадь поперечного сечения электролита, через которую проходит электрический ток см2, может быть уменьшено, как следует из приведённого выражения, сближением электродов, введением в раствор более электроотрицательных добавок, а также повышением температуры. Если электролиз сопровождается образованием газов, то приведённое выше выражение не всегда точно соответствует падению напряжения в электролите. Это объясняется тем, что выделяющиеся на электродах пузырьки газов уменьшают активное сечение электролита S и удлиняют путь тока от одного электрода к другому. Это явление называется газонаполнением, которое может быть определено как отношение объёма занимаемого в данный момент пузырьком воздуха к общему объёму электролитической ячейки. Влияние газонаполнения на электропроводность электролита может быть учтено с помощью следующего выражения:
р/р0 = 1–1.78? + ?2
где р и ро — соответственно удельные сопротивления сплошного и газонаполненного электролита, ? — газонаполнение. Величина ? может быть уменьшена повышением температуры, а также особым устройством электродов, обеспечивающих свободное удалением газов из ячейки.
Падение напряжения в диафрагме было оценено при решении вопроса о роли диафрагмы в электролизе. Что касается падения напряжения в контактах, то эта величина зависит от совершенства контактов, чистоты контактирующих поверхностей. Существует довольно много конструктивных решений электродных контактов.
Коэффициентом полезного использования напряжения называется отношение напряжения разложения к общему напряжению на ванне:
?напр = (еа– еk)/U
Плотностью тока называется отношение силы, проходящего через электролит тока к величине поверхности электрода; измеряют в А/см2 (дм2 или м2). В промышленности работают с различными плотностями тока — от нескольких сотен А/см2 (гальваностегия, гидроэлектрометаллургия, производство хлора) до нескольких тысяч А/см2 (электролиз расплавов, электросинтез и т. д.)
Величина плотности тока характеризует количество продукта, получаемого с единицы электродной поверхности, т. е. продуктивность электролизёра. Поэтому, если повышение плотности тока не вызывает падения выхода продукта электролиз, стремятся к проведению процесса с максимально возможными плотностями тока. Однако при выборе оптимальных значений плотностей тока в некоторых случаях необходимо принимать во внимание, увеличение себестоимости продукта за счёт повышения расхода электроэнергии на электролиз вследствие увеличения напряжения с ростом плотности тока. При электролизе ток, который пропускают через электролит, может расходоваться на несколько параллельных электрохимических реакций. Например, при электролизе водных растворов реакциям электрохимического окисления или восстановления, сопутствует реакция разложения воды на O2 и Н2, выделяющиеся соответственно на аноде и катоде. При электролизе, криолит-глиноземных расплавов ток в определённых условиях может расходоваться не только на выделение алюминия, но и на образование на катоде металлического натрия.
Следовательно, пропускаемый через электролит ток распределяется между несколькими процессами, протекающими на данном электроде одновременно:
I = i1 + i2 + i3 + … + in
где: I — ток, протекаемый через электролизёр; i1 и i2 — ток, расходуемый в единицу на первую и второю электролитическую реакцию.
Для того чтобы учитывать эффективность использования пропущенного через электролизёр количества электричества на образования того или иного продукта вводится понятие выхода по току.
Выход по току — отношение количества теоретически необходимого для получения того или иного количества электричества (по закону Фарадея) к практически затраченному количеству электричества. С целью уменьшения затрат электроэнергии на побочные электрохимические реакции и повышения по току стремятся проводить электролиз в таких условиях, при которых затруднено разложение растворителя, т. е. велика поляризация при окислении или восстановлении растворителя (например перенапряжение кислорода или водорода). Это достигается повышением плотности тока, изменением температуры электролита, подбором материала электролита и т. д.
Выход по веществу — это отношение количества полученного в результате электрохимических реакций продукта к тому количеству, которое должно образоваться теоретически, исходя из данной загрузки исходного продукта. КПД использования электроэнергии (выход по энергии) — это отношение теоретически необходимого для получения единицы количества вещества электроэнергии к практически израсходованному. Теоретически необходимое количество электроэнергии — то количество ее, которое было бы необходимым для получения единицы количества вещества, если бы процесс происходил со 100 % выходом по току и при напряжении, равном напряжению разложения. Следовательно, выход по энергии может быть определен по формуле: