Интернет-журнал "Домашняя лаборатория", 2008 №3
Шрифт:
Нормировка площади пика на время миграции является лишь вычислительным приемом с результатами анализа. Однако, причина изменения времени миграции все же остается. Несмотря на это, путем такой нормировки ОСО площади пика уменьшается с 6.2 % до 2.8 %. Приемлемым решением этой проблемы является подготовка капилляра перед каждым пуском. В анализах, описанных до настоящего времени, для кондиционирования капилляра применяли только промывание разделяющим буфером в течение 3 мин.
Для удаления белков из капилляра после каждого разделения во второй серии измерений капилляр сначала промывали в течение 5 минут 0.1 М NaOH и затем 5 минут разделяющим бусрером. Этим способом кондиционирования можно было удалять со
Амины также могут легко протонироваться, и, так же как ионы металлов или аммония, их можно легко разделять. Типичные значения pKs для алифатических аминов лежат в области от 9.5 до 10.8. На рис. 56 в качестве примера представлено разделение ионов металлов, аминов и аминоспиртов. И в данном случае непрямое УФ-детектирование достигается имидазольной буферной системой. Благодаря высокому разрешению пиков, все вещества, как видно из рисунка, отделены друг от друга на уровне базисной линии.
8.3. Сопоставление методов прямого и непрямого Уф-детектирования
Сопоставление нижней границы детектирования (НГД) и верхней границы линейной области удается провести при анализе некоторых аминов, плохо поглощающих в УФ-области. Аналогичные измерения со щелочными или щелочно-земельными ионами провести невозможно из — за их слишком малого УФ-поглощения. Из данных, приведенных в таблице 21, видно, что эта ионы при 200 нм можно детектировать прямым способом. В боратном буфере анализ длится до 5 мин. Непрямым УФ-детектированием при 254 нм с эфедрином в качестве буфера нижняя граница детектирование уменьшается в 50 раз (примерно до 1 мг/л). Линейная область в методе прямого УФ-детектирование распространяется от 1.4 до 1.6 десятичных порядков, а при непрямом УФ-детектировании — от 1.7 до 2.0 десятичных порядков.
Рис. 55. Разделение разжиженной пробы крови, воспроизводимость времен миграции, площади пика и нормированные площади пика. Условия аналогичны приведенным на рис. 53.
Из этого видно, что и при непрямом детектировании можно работать в линейной области.
Рис. 56.Разделение низших аминов и ионов металлов.
Условия: прибор КЭ Mill/pore Waters Quanta 4000; капилляр: 75 мкм, 50/58 см; поде: 436 В/см, буфер: 5 мМ имидазол/серная кислота, pH 4,7; ввод пробы гидростатический, 30 с, непрямое детектирование 214 нм, проба: 1.0–2.5 ррт; 1 — кадий, 2 — натрий, 3 — диметиламин, 4 триметиламин, 5 — кальций, 6 — магний, 7 — литий, 8 — диэтиламин, 9 — триэтиламин, 10 — диэтаноламин, 11 — триэтаноламии.
Условия разделения: прибор КЭ — Beckman P/FCE 2000; капилляр 75 мкм, 50/57 см; поле 439 В/см; ввод пробы давлением 8 с, буфер при прямом УФ-детектировании — 50 мМ борат, pH 9.5, при непрямом УФ-детектировании — 5 мМ эфедрин/серная кислота, pH 7.5; прямое УФ-детектирование — 200 нм, непрямое — 254
9. Капиллярный зонный электрофорез (КЗЭ) белков
В КЗЭ белков между молекулами пробы и стенками капилляра могут возникнуть сильные, в основном электростатические, взаимодействия. Они происходят между отрицательно заряженными сила-нольными группами поверхности и положительно заряженными функциональными группами пробы. Некоторую дополнительную роль могут играть также неспецифические взаимодействия с образованием водородных мостиков или ван-дер-ваальсовы взаимодействия. Адсорбция молекул белков на стенках капилляра может отрицательно сказываться на разделении при КЭ и поэтому нежелательна. Она приводит к ухудшению воспроизводимости времен миграции, уширению и асимметрии пиков, и даже к необратимой адсорбции компонентов пробы. Поэтому при работе с немодифицированным капилляром рекомендуется после каждого проведенного разделения при вводе пробы из биологических матриц основательно промыть капилляр (например, NaOH). При этой операции молекулы, адсорбированные на стенках капилляра, удаляются, и воспроизводимость системы улучшается. Существует несколько возможностей подавления нежелательных взаимодействий между белками и стенками капилляра.
9.1. Оптимизация разделения в немодифицированных капиллярах
9.1.1. Значения pH
При значениях pH выше изоэлектрической точки (р!) белки существуют в анионной форме, то есть имеют те же заряды, что и стенки капилляра и во время разделения отталкиваются от них. Поскольку очень многие белки имеют значения pi, лежащие в области от нейтральных до слегка кислых, буфер для КЭ должен иметь явно щелочные значения pH (pH 9-11). Однако, в случае сильно основных белков (pH > 10) эта возможность достигает своих естественных границ. Кроме этого, в данном случае дают себя знать высокая электропроводность применяемого буфера и отрицательно сказывающееся явление денатурирования, которое может возникнуть в этих характерных условиях. На рис. 57 показано разделение белков в немодифицированном капилляре при pH 11.5.
Рис. 57. Разделение белков при pH 11.5 в немодифицированном капилляре.
Буфер: 100 мМ борат, pH 11.5; пробы: 1 — DMF, 2 — РНК крупного рогатого скота, 3 — миоглобин кита, 4 — миоглобин лошади, 5 — кональбумин, 6 — ?-лактоглобулин, 7 — бычий сывороточный альбумин (БСА), 8 — ферритин, 9 — ?-амилоглюкозидаза.
В кислой области pH (рН<2) адсорбция белков также может уменьшаться вследствие протонирования силанольных групп и устранения тем самым отрицательного заряда поверхности. В данном случае проблемы представляют очень малый ЭОП и возможная денатурация белков. Использование крайних значений pH для анализа биополимеров ограничивает селективность системы, поскольку разница в зарядах анализируемых веществ заметно уменьшается. Кроме того, выгодно иметь в качестве свободно изменяемого параметра значение pH. Скорость движения заряженных проб в КЗЭ определяется степенью их ионизации, которую можно легко регулировать величинами pH. Наилучших результатов можно достичь, выбирая высокие концентрации буфера и область pH чуть ниже 3. На рис. 58 представлены некоторые тестовые буферы для разделения основных белков.