Искушение астрологией, или предсказание как искусство
Шрифт:
Мозаика на плоскости из треугольников, квадратов и шестиугольников
Если многоугольники можно классифицировать на основании того, что они собой представляют, рассуждает далее Кеплер, то тогда и на основании того, что они делают. Геометрическая плоскость сама по себе начисто лишена какой-либо структуры. У нее есть два измерения, но никаких внутренних особенностей. Однако, взяв бесконечное количество квадратов, математик может покрыть плоскость ими, ставя их подряд, так, чтобы не оставалось зазоров. В результате получится мозаикаплоскости. А пятиугольник, напротив, не может закрыть
Кеплер открыл три удивительных звездных многогранника. На рисунке изображен самый простой из них. Весь многогранник можно выложить мозаикой из правильных плоских фигур — в данном случае треугольников
Именно это обстоятельство подсказало Кеплеру вторую схему для классификации — и второй способ классификации правильных многоугольников. Те многоугольники, которые можно сложить так, чтобы получилась мозаика, Кеплер назвал контактными, а остальные неконтактными. Всего три правильных многоугольника контактны сами с собой, иначе говоря, самоконтактны, если построить такой неологизм. Это равносторонний треугольник, квадрат и шестиугольник.
Но по тому же признаку разные видысамоконтактных многоугольников могут объединяться друг с другом и складываться в собственную мозаику: квадраты с треугольниками или шестиугольники с квадратами. Получится полуправильнаямозаика на плоскости.
Переходим на следующий, последний уровень сложности. Сложить мозаику можно не только на плоскости. Платоновы тела заполняют часть пространства и, таким образом, существуют в трех измерениях. Но каждое тело составлено из граней, которые сами по себе — правильные многоугольники. Вот что такое куб, если не шесть блуждающих квадратов, встретившихся в восьми ожидавших их вершинах? Тела, образованные таким способом, называются однородными многогранниками, они покрываются правильными прямоугольниками со стороны соответствующих им многоугольников по принципу квадрат к кубу. Но мозаичные многогранники выходят за пределы тел Платона лишь немного, включая в себя три эффектных звездных многогранника, открытых Кеплером. И это опять трехмерные тела, чьи грани могут быть покрыты набором правильных многоугольников.
Вернемся к ключевому понятию — контактности. Контактность многоугольника — это количество способов, которыми он может взаимодействовать с другими правильными многоугольниками, чтобы закрыть плоскость или однородный многогранник.
Определения исчерпаны, и классификация Кеплера завершена.
Теперь на сцену выходят астрологи. Аспект играл свою роль в астрологии еще со времен древних греков, если не раньше. В конце концов, ведь зодиак — это гигантский круг, охватывающий Землю. Когда две (или более) планеты идут по его окружности, дуга между ними меняется в каждый момент времени. Птолемей в Tetrabiblosпредставил пять важных единиц, соответствующих углам в 0, 60, 90, 120 и 180 градусов. Когда планеты находятся в этихпозициях, заявлял Птолемей, их влияние значительно. Выдвинув свои утверждения без доказательств, он ожидал, что астрологи примут их без тени сомнения. Собственно, так оно и случилось.
В Harmonicum MundiКеплер добавил в астрологию еще восемь аспектов. Однако егоаспекты выводятся из базисной геометрической теории и возникают благодаря доказательству, которое, хотя и не всегда рационально, не так уж произвольно. Обе Кеплеровы геометрические иерархии играют роль в его астрологической теории.
Угловой аспект, возникающий из секстиля между планетами, вписанными в данном случае в шестиугольник
Итак,
И в этом нет ничего чуждого традиционной астрологической мысли. Между двумя планетами в самом делеесть угол. У аспектов найдется реальное основание в наглядной геометрии. Но поскольку в распоряжении аспектов — 360 градусов, а следовательно, бесконечномного вариантов угловых соотношений между двумя планетами, астрологу требуется, утверждает Кеплер, некоторая схема для различения аспектов, способных влиять на дела человеческие, и всех остальных.
Именно это и дает Кеплерова схема классификации. Аспект силен с астрологической точки зрения, говорит он, если соответствует вписанному многоугольнику, который одновременнопознаваем иконтактен. Например, секстиль — классический Птолемеев аспект. Планеты, разделенные аспектом секстиль, располагаются в вершинах вписанного шестиугольника, который и познаваем, и контактен. Стало быть, секстиль — астрологический сильный аспект. Он требует внимания, ибо контролирует явления.
Если расширить эти доводы, можно прийти к классификации астрологических аспектов на основании их познаваемости и контактности. Более того, они приведут нас к ранжированиюаспектов по степени их силы, или «благородству», как выразился Кеплер. Самые сильные аспекты — оппозиция и слияние. Самые слабые лежат между восемнадцатью и двадцатью четырьмя градусами.
Какие бы суждения ни возникали сегодня о теории аспектов Кеплера, ясно одно: работая в рамках теорий, доставшихся емув наследство, он сумел привнести в доктрину, по большому счету весьма прихотливую, но определенную долю математической достоверности. Иоганн Кеплер провел следующие четырнадцать лет в Линце, городе, славящемся ныне своим шоколадом. Он снова женился и претерпел новые испытания. Его биография показывает нам человека, которому постоянно досаждали мелкие неудобства: неумелые печатники, финансовые затруднения и нетерпимость окружающих. Так, например, ему отказали в праве стать прихожанином местной церкви из-за некоторых особенностей его вероисповедания, причем столь ничтожных, что их и разглядеть-то почти невозможно.
Вдобавок его мать обвинили в колдовстве. Это известие, говорит он, «едва не заставило сердце вырваться из его тела». Несмотря на вынужденный отъезд из Праги, Кеплер сохранил должность императорского математика. Ему пришлось воспользоваться своим авторитетом, чтобы спасти мать от костра. Ужасная и трогательная история. Сам Кеплер верил в ведьм и, как самый простой немецкий крестьянин, в злых духов. Такие верования были распространены и среди католиков, и среди протестантов. Чем решительнее их отстаивали, тем очевиднее они казались. Кеплер просто психологически не мог совершить путешествие в Вуртембург и заявить с возмущением, что обвинения против его матери абсурдны. Он мог утверждать лишь то, что она невиновна. Процесс тянулся более года, и в конце концов мать Кеплера оправдали благодаря некой юридической тонкости.
В таких весьма сложных обстоятельствах великий ученый завершил вторую часть своей обширнейшей астрологической схемы. Кеплерова теория астрологических аспектов представляет собой описание определенных пространственных гармоний между планетами. Но одних аспектов ему было мало. За долгие годы трудов, посвящая все силы всматриванию в космос, Кеплер решился на еще большую дерзость: составление схемы координации музыкальных и небесных гармоний напрямую. Птолемей постиг музыкальные гармонии, последовательно деля веревочку на отрезки. Ушами он различил разделения, которые соответствуют тому, что хорошо звучало и доставляло ему наслаждение. Кеплер счел это крайне неудачной методикой. Как и всякий нормальный математик.