Искусственный интеллект
Шрифт:
Таким образом, интеллектуализация представляет собой процесс перевода (эволюции) технической системы из её текущего положения в пространстве «Адаптивность – Автономность» в четвёртый квадрант как можно ближе к точке (1; 1). Из квадрантов II и III такой переход может быть осуществлён непосредственно, в то время как в квадранте I может существовать три возможные траектории интеллектуализации системы, что показано на следующей схеме.
Таким образом,
Раздел 2.1. Символьные вычисления
Начнём с символьных вычислений. Это, если можно так выразиться, некоторая надстройка над методами представления знаний, которая позволяет представленными знаниями оперировать. Другими словами, символьные вычисления используются для вывода на имеющихся знаниях новых фактов в рамках некоторой проблемной области. Это кардинально отличается от нейросетевого подхода, который будет изучен далее, поскольку каждый шаг символьных вычислений можно объяснить, а сами методы основаны на формальной логике.
Первоначально символьные вычисления основывались на математическом понятии «формальная система», в рамках которого определялся алфавит для построения выражений (он является либо конечным, либо счётным), множество правильно построенных формул (подмножество выражений), множество аксиом (подмножество правильно построенных формул) и множество правил вывода (конечное множество отношений между правильно построенными формулами). Если не вдаваться в подробности, то в рамках формальной системы осуществляется полное абстрагирование от смысла слов естественного языка, на котором выражается какая-то теория, и её перевод в строгие формальные рамки с возможностью при помощи правил вывода синтаксического получения из аксиом и формул других формул. Кроме того, для формальных систем различных типов имеются дополнительные свойства, позволяющие эффективно определять выводимость формул, их разрешимость, непротиворечивость и полноту самой формальной системы.
Обычно множество правил вывода какой-либо формальной системы представляет собой набор посылок с заключениями. Другими словами, каждое правило вывода – это формальное синтаксическое преобразование одной формулы в другую. Такое преобразование может быть записано при помощи нотации «ЕСЛИ… ТО…», а это, в свою очередь, обозначает, что правила вывода формальной системы могут быть описаны продукциями в их самом простом варианте без необходимости использования контекста, условий применимости и других более тонких свойств продукционной модели представления знаний.
От продукций, при помощи которых представляются знания, правила вывода формальной системы ещё отличаются и тем, что выражения в посылках и заключениях таких правил рассматриваются в качестве синтаксических конструкций, а сам вывод представляет собой манипулирование этими конструкциями. Такой подход позволяет реализовать универсальную машину вывода, а процесс интерпретации смысла или семантику вынести на более высокий уровень в рамках интеллектуальной системы. Другими словами, результаты осуществлённого вывода воспринимаются специальным интерпретирующим модулем системы, который посылает команды исполнительным устройствам. Последние
Необходимо отметить, что некоторые формальные системы содержат счётные бесконечные множества аксиом, правильно построенных формул и даже правил вывода. Это значит, что в явном виде их перечислить невозможно. Вместо явного перечисления используются так называемые схемы – аксиоматические схемы и схемы правил вывода. Так что универсальная машина вывода должна иметь возможность работать и со схемами, на основании которых можно создавать счётные бесконечные множества правил вывода и, соответственно, правильно построенных формул.
Итак, ранее уже были упомянуты логические правила вывода, на которых основывается работа универсальной машины вывода. Во-первых, это правило ModusPonens, которое звучит как «Если есть правило, что из некоторого факта А следует заключение Б, и если при этом факт А истинен, то можно сделать вывод, что заключение Б тоже истинно». Это правило вывода предназначено для осуществления прямого вывода, когда есть набор фактов (в случае формальной системы – аксиом) и из них необходимо вывести максимальное количество истинных заключений (в формальных системах – правильно построенных формул).
Во-вторых, есть правило ModusTollens, которое звучит как «Если есть правило, что из некоторого факта А следует заключение Б, и при этом установлено, что заключение Б ложно, то можно сделать вывод, что факт А тоже ложен». Это правило вывода используется в обратной стратегии вывода, когда наблюдается некоторое наличное состояние объекта наблюдения в рамках проблемной области и необходимо понять, что могло бы привести к этому состоянию, какие причины лежат в его основе. Обратный вывод обычно даёт вероятностные оценки возможных причин.
Описанные правила вывода основаны на обычной аристотелевой логике. Эти правила использовались в рассуждениях в виде отдельных типов силлогизмов ещё в античном мире. Реализация машины вывода, которая соблюдает такие правила, является делом достаточно простым. Тем не менее это очень мощный формализм, который позволяет решать многие задачи. Однако в конце XX века были предложены новые формализмы, которые расширяют аристотелеву логику и позволяют ещё более тонко подходить ко многим проблемным областям. Рассмотрим некоторые из них.
Первый важный формализм – нечёткая логика и связанные с ней понятия «лингвистическая переменная» и «нечёткая переменная». По мере осуществления попыток формализовать при помощи аристотелевой логики знания о более или менее сложной проблемной области становилось понятно, что простой «чёрно-белый» вариант логики с двумя значениями истинности не может описать всю гамму возможностей при рассмотрении человеком вариантов решения задач. Дело в том, что человек обычно решает задачи не в идеальном мире, а в условиях неполноты информации, нечёткости определений, неточности измерений и т. д. И все такие НЕ-факторы практически невозможно описать при помощи аристотелевой логики. На помощь пришли многозначные логики и, как их апофеоз, бесконечнозначная нечёткая логика. Последняя, к примеру, позволяет осуществлять логический вывод при наличии фактов, не совпадающих с посылками продукций, но машина вывода с возможностью обрабатывать нечёткость всё так же будет способна получить результат, чаще всего вполне приемлемый.
Меняя маски
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
![Меняя маски](https://style.bubooker.vip/templ/izobr/no_img2.png)