Чтение онлайн

на главную

Жанры

Искусственный интеллект
Шрифт:

В основе этого подхода лежит понимание, что феномены человеческого поведения, наша способность к обучению и адаптации есть следствие именно биологической структуры и особенностей её функционирования. Хотя, скорее всего, это очень слабая гипотеза. Вычисления в рамках квазибиологического подхода организуются при помощи живых тканей, клеток, вирусов и различных биомолекул. Часто используются молекулы дезоксирибонуклеиновой кислоты, на основе которой создают ДНК-компьютер. Кроме ДНК, в качестве биопроцессора могут использоваться также белковые молекулы и биологические мембраны.

Обычно для решения определённой задачи создаётся так называемая «индивидуальная машина», которая, в отличие от универсальной машины Тьюринга, направлена на решение конкретной задачи, причём обычно делает

это более эффективным способом, поскольку индивидуальная машина специально сконструирована для решения именно этой задачи. Машина Тьюринга, лежащая в основе стандартной вычислительной модели, выполняет свои команды последовательно, а в рамках квазибиологической парадигмы часто рассматривается массовый параллелизм. Ну вот если, к примеру, рассмотреть ДНК-компьютер, то в нём все молекулы ДНК одновременно участвуют во взаимодействиях, параллельно проводя вычисления.

Два самых главных направления в рамках квазибиологического подхода – это молекулярные вычисления и биомолекулярная электроника. Можно ещё упомянуть нейрокомпьютинг и создание нейроморфных чипов, но они чаще всего рассматриваются как часть структурного подхода и искусственных нейронных сетей.

Молекулярные вычисления – это отдельная вычислительная модель, в которой решение задачи осуществляется при помощи проведения сложных биохимических или нанотехнологических реакций. Молекулярные компьютеры – это молекулы, запрограммированные на нужные свойства и поведение, которые, участвуя в химических реакциях, как бы «выращивают» результат. Что интересно, идею биокомпьютинга подсказал выдающийся математик Джон фон Нейман в своей книге «Теория самовоспроизводящихся автоматов», которую, кстати, очень рекомендую для внимательного чтения. В этой книге описан проект клеточных автоматов, которые могут самовоспроизводиться, как живая клетка.

Почти в каждой живой клетке нашего организма есть длинная молекула ДНК, кодирующая генетическую информацию. При помощи различных ферментов цепочки ДНК могут быть разрезаны, склеены, в них могут добавляться буквы генетического кода или удаляться из них. Всё это – базовые операции работы с информацией, которые могут быть использованы для производства вычислений. Более того, цепочки ДНК могут воспроизводиться и клонироваться. Это позволяет запустить массовый параллелизм поиска решения. В небольшой пробирке после проведения должным образом сконструированной биохимической реакции будет получен результат, который считывается специальной аппаратурой.

Интерес вызывает то, что для некоторых задач молекулярные компьютеры очень быстро и точно находят приемлемые решения, в то время как традиционные компьютеры затрудняются это сделать. Например, решение задачи коммивояжёра, т. е. поиска кратчайшего пути обхода графа, при помощи реакций с ДНК осуществляется практически мгновенно, в то время как для обычного компьютера требуется огромное количество времени. Правда, тут есть одна тонкость, которая мешает работе обычному компьютеру, – это комбинаторный взрыв. И если в традиционной архитектуре он ведёт к увеличению времени решения, то для ДНК-компьютера требуется подготовка огромного количества вариантов нуклеотидных нитей. Соответственно, объём пробирки растёт так же, как и количество вариантов в комбинаторном взрыве.

В общем, часто биокомпьютинг можно охарактеризовать как новую парадигму вычислений, которая, в отличие от традиционной вычислительной модели, работает быстро, но при решении сложных задач с комбинаторным взрывом растёт не время вычислений, а необходимый для них объём биокомпьютера.

Вместе с тем в последнее время всё активнее разрабатывается агентный подход к построению искусственного интеллекта. В рамках этого подхода изменена точка зрения на цель построения интеллектуальной системы и считается, что построить нужно систему не с разумным поведением, а с рациональным. С одной стороны, это серьёзно облегчает задачу, поскольку, в отличие от понятий «разум» или «интеллект», понятия «рациональность» и «рациональное поведение» можно строго формализовать (например, рациональное поведение – это выбор и достижение оптимальной цели с минимизацией затраченных на это

ресурсов). С другой стороны, для демонстрации рационального поведения агент должен обладать достаточной «разумностью», чтобы определить цель, составить стратегию её достижения и выполнить её.

Каждый агент – это полноценная кибернетическая машина, которая имеет систему управления, непрерывно получающую информацию с сенсорных систем агента и воздействующую на окружающую среду при помощи исполнительных устройств (или актуаторов). При этом подход не определяет сущность сенсорных систем и актуаторов – их природа может быть произвольной. Поэтому агентный подход одинаково применим как к чисто программным сущностям, работающим в некоторой искусственной среде, так и к программно-аппаратным комплексам, равно как и вообще к биологическим системам.

Общая схема агента и его взаимодействия со средой

Агентный подход интересен тем, что в его рамках можно использовать эволюционные алгоритмы, которые подбирают интеллектуальных агентов, исходя из степени их приспособленности к достижению цели. Во время взаимодействия агентов осуществляется отбор наиболее успешных, которые затем используются для генерации нового поколения агентов, среди которых опять применяются те же самые процедуры оценки и отбора. В итоге наиболее успешное поколение решает задачи и достигает целей наиболее эффективным образом. Это идеальный вариант, который сегодня сложно достижим, но стремиться к нему интересно. Также агентный подход лежит в основе так называемых многоагентных систем, в рамках которых осуществляется общее целеполагание, после чего каждому индивидуальному агенту даётся свобода действий в определённых рамках, где он имеет возможности и альтернативы по разработке и реализации различных стратегий достижения своей частной цели. В процессе этого агенты взаимодействуют друг с другом и со средой, обмениваясь информацией и выполняя запросы других агентов. Кроме того, вполне может быть использована идея так называемого «роевого интеллекта», когда каждая отдельная «особь» (то есть агент) интеллектом не обладает, но в целом «рой» (множество агентов, многоагентная система) обладает определёнными интеллектуальными способностями. Надо отметить, что всё перечисленное является одним из наиболее перспективных направлений исследований по искусственному интеллекту.

* * *

Итак, философия сознания, начавшаяся развиваться вместе с более «взрослым» пониманием задач и проблем искусственного интеллекта, выделяет два крупных подхода к построению интеллектуальных систем и искусственных разумных существ: чистый (нисходящий) и грязный (восходящий). Чистый подход объединяет такие технологии, как экспертные системы, универсальные машины вывода, семиотические базы знаний. Самым выдающимся и далеко продвинувшимся направлением в рамках этого подхода является направление символьных вычислений, которое основано на логике манипулирования символами. Грязный подход объединяет такие технологии, как искусственные нейронные сети, эволюционные вычисления и биокомпьютинг. Грязный подход моделирует биологические основы разума у человека, в то время как чистый подход имитирует высокоуровневые психические и когнитивные процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.

Однако, как уже было описано выше, и чистый, и грязный подходы имеют как достоинства, так и свои недостатки. В частности, нейронные сети и все смежные технологии обладают очень существенными ограничениями.

1. Наука до сих пор не обладает полным пониманием того, как обучается нейронная сеть. Теоретический математический аппарат, конечно, имеется, однако при переходе в практическое русло вычислительная сложность интерпретации того, как и, главное, почему нейросеть настроила свои весовые коэффициенты так, а не иначе, нелинейно возрастает до космических величин. И в итоге получается чёрный ящик в качестве модели чёрного ящика. Это совсем не то, что нужно.

Поделиться:
Популярные книги

Повелитель механического легиона. Том VI

Лисицин Евгений
6. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VI

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Возвращение Безумного Бога 3

Тесленок Кирилл Геннадьевич
3. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 3

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Курсант: Назад в СССР 13

Дамиров Рафаэль
13. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 13