Искусственный спутник Земли
Шрифт:
Ньютон доказал, что в таком случае снаряд превратится в искусственный спутник Земли, но только обращаться вокруг Земли он будет не по окружности, а по эллипсу (рис. 2).
Рис. 2. Связь между скоростью тела и формой его траектории.
Чем с большей скоростью снаряд покинет ствол орудия, тем по более вытянутому и крупному эллипсу он полетит. На рисунке показана эллиптическая орбита спутника, по которой он будет двигаться, если его скорость
Мыслим и такой случай, когда скорость снаряда станет больше 11,2
Подведем итоги:
Снаряд ньютоновой пушки может лететь по разным траекториям. Если его скорость меньше круговой (8
Ньютон был основателем небесной механики — науки о движениях небесных тел, вызванных их взаимным притяжением. Ему принадлежит полное решение основной, простейшей задачи небесной механики — так называемой «задачи двух тел».
Представим себе два небесных тела с известными массами m1 и m2. Допустим, что тела притягивают друг друга и в начальный момент расстояние между ними равно r (рис. 3). Скорость каждого из тел изобразится вектором, величину и направление которого будем считать известными (векторы ?1 и ?2). «Задача двух тел» заключается в том, чтобы, исходя из указанных начальных
Рис. 3. Задача двух тел.
Ньютон решил эту задачу. Он доказал, что если одно из тел считать неподвижным, то второе тело может двигаться относительно первого только по одной из известных нам кривых — эллипсу, параболе или гиперболе. Какова же конкретно будет орбита второго тела — это зависит от исходных данных «задачи двух тел». Нетрудно заметить большое сходство простейшей задачи небесной механики с задачей Ньютона. И там и здесь — два тяготеющих друг к другу тела. И там и здесь некоторые «начальные условия» определяют конкретное решение задачи.
Однако задача двух тел более общая, чем «задача Ньютона». В последней начальная скорость второго тела имеет всегда одно и то же (горизонтальное) направление. В «задаче двух тел» как величина, так и направление начальной скорости, а также расстояние между телами могут быть любыми.
Искусственные спутники Земли, как мы увидим в дальнейшем, будут созданы на разных высотах. Различны будут их массы и начальные скорости. Вот почему для расчета орбит искусственных спутников Земли придется воспользоваться не только решением «задачи Ньютона», но и формулами задачи двух тел.
Если бы можно было пренебречь притяжением небесных тел и считать, что на спутник действует только сила земного тяготения, орбита спутника могла бы быть только окружностью или эллипсом. В действительности движение спутника во многих случаях будет гораздо более сложным.
Наш естественный спутник — Луна — обладает настолько большой массой и так близок к Земле, что пренебречь его воздействием на искусственные спутники невозможно. Только те из них, которые будут обращаться вокруг Земли на сравнительно небольшой высоте (сотни километров), не испытают на себе заметного влияния Луны.
Для более же отдаленных спутников притяжение Луны способно сильно усложнить их орбиты.
В таком случае возникает задача не двух, а трех тел: Земли, Луны и спутника. Пусть искусственный спутник расположен где-то между Землей и Луной. Будем считать, что в некоторый начальный момент времени взаимные расстояния трех тел, их массы и начальные скорости известны. Задача состоит в том, чтобы определить, как будут двигаться все три притягивающих друг друга тела, в частности интересующий нас искусственный спутник Земли.
Задача трех тел исключительно сложна и в общем случае, т. е. когда массы тел могут быть любыми, она по существу не получила и доныне своего решения. Правда, в начале текущего века финляндский математик Зундман вывел формулы, выражающие положение всех трех тел через начальные условия. Однако формулы Зундмана настолько громоздки, что никаких практических расчетов по ним производить нельзя.
Только в некоторых частных случаях «задача трех тел» допускает сравнительно простые решения. Одно из них было найдено знаменитым французским математиком Лагранжем в конце XVIII века. «Случай Лагранжа» заключается в следующем.
Допустим, что три тела в некоторый момент времени образуют вершины равностороннего треугольника. Тогда, как доказал Лагранж, и в дальнейшем их взаимное расположение не изменится, как бы сложно не перемещался в своей плоскости возникший равносторонний треугольник.
Любопытно отметить, что «случай Лагранжа» наблюдается в природе. Оказывается, у крупнейшей планеты солнечной системы — Юпитера есть своеобразные «конвоиры» (рис. 4). Это — карликовые планеты (астероиды), обращающиеся вокруг Солнца по орбите Юпитера. Десять из них предшествуют Юпитеру, а пять идут сзади, причем в каждый момент времени Солнце, Юпитер и «троянцы»[3] находятся в вершинах двух равносторонних треугольников.