Искусство философствования
Шрифт:
Более показательным примером является движение планет. Посредством наблюдения Кеплер доказал, что траекторией движения планет вокруг Солнца является эллипс, и открыл взаимосвязь расстояния планеты до Солнца и времени, в течение которого эта планета совершает полный оборот вокруг Солнца. Это открытие позволило Ньютону с помощью дифференциального исчисления определять скорость движения планеты в любой точке ее траектории; эта скорость непостоянна – она увеличивается по мере приближения планеты к Солнцу. Затем, еще раз использовав дифференциальное исчисление, Ньютон смог определить ускорение планеты в каждый момент времени, т. е. изменение ее скорости и по величине, и по направлению. Он обнаружил, что любая планета в любой момент времени обладает ускорением в направлении Солнца, которое обратно пропорционально квадрату ее расстояния до Солнца.
Затем с помощью интегрального исчисления Ньютон проанализировал другую задачу: если в любой момент времени тело обладает ускорением в направлении Солнца, которое обратно пропорционально квадрату его расстояния до Солнца, то по какой траектории оно будет двигаться? Ньютон доказал, что тело за равные
Однако исчисление применяется не только к изменению во времени. Оно применимо в любом таком случае, когда одна величина является «функцией» другой. Понятие «функции» очень важно, и я попытаюсь его объяснить.
Возьмем изменяющуюся величину. Другая величина называется ее «функцией» в том случае, если при заданном значении одной величины значение другой нужно вычислить. Например, если вам нужно перевезти определенное количество нефти на поезде, то число необходимых для этой перевозки вагонов является «функцией» количества нефти; если вам нужно накормить армию, то количество необходимых продуктов является «функцией» числа солдат. Если тело падает в вакууме, то расстояние, преодолеваемое им при падении, является «функцией» времени, в течение которого оно падало. Число квадратных футов ковра для данной квадратной комнаты является «функцией» длины стены комнаты, так же как и количество жидкости, которую можно залить в кубический контейнер. В одном случае функцией является квадрат, в другом – куб: для комнаты, длина стены которой в два раза больше, чем в данной, нужен в четыре раза больше ковер; а в контейнер, который в два раза выше данного, можно залить в восемь раз больше жидкости, если и другие его параметры также увеличены в два раза.
Некоторые функции очень сложны. Ваши налоги являются функцией вашего дохода, но лишь специалисты знают, какой конкретно функцией. Предположим, какой-то математически образованный специалист предложил использовать простую функцию, например, ваши налоги должны быть пропорциональны квадрату вашего дохода. Он дополнил свое предложение другим: ни один доход после уплаты налогов не должен превышать 25 000$. Как же эти предложения будут работать? Налоги должны быть одной сотой или тысячной частью квадрата вашего дохода в долларах. Для доходов, меньших, чем квадратный корень из 1000$ (это примерно 32$), налог должен быть меньше одного цента, и его невозможно будет собрать; для доходов в 1000$ налог будет 10$; для 2000$ – 40$; для 10 000$ – 1000$ и для 50 000$ – 25 000$. После этих выплат любое увеличение вашего дохода сделает вас беднее. Если ваш доход равен 100 000$, то налог будет равен вашему доходу, и вы будете разорены. Не думаю, что кто-либо будет защищать такую налоговую политику.
Для любой функции переменной x небольшое увеличение x будет сопровождаться небольшим увеличением или уменьшением функции, если функция дискретная. Например, пусть х – радиус круга, а функция – площадь круга, пропорциональная квадрату радиуса. Если радиус несколько увеличивается, то увеличивается площадь круга;
увеличение достигается умножением увеличения радиуса на окружность. Дифференциальное исчисление предоставляет степень (rate) увеличения функции при заданном небольшом увеличении переменной. С другой стороны, если вам известна степень увеличения функции относительно переменной, то интегральное исчисление покажет вам, каково будет в целом увеличение или уменьшение функции при изменении значений переменной. Самым простым из важнейших примеров этому является падение тела в вакууме. В данном случае ускорение тела является постоянной величиной; иными словами, увеличение скорости в любой данный момент времени пропорционально времени. Следовательно, скорость в любой момент времени пропорциональна времени, в течение которого тело падает. Исходя из этого интегральное исчисление показывает, что расстояние, преодолеваемое им при падении, пропорционально квадрату времени падения. Это можно доказать, и не используя интегрального исчисления, что было сделано Галилеем; однако в более сложных случаях интегральное исчисление является ключевым механизмом.
Математика, по крайней мере по ее собственному притязанию, является точным инструментом, и в тех случаях, когда она применяется к реальному миру, всегда существует неоправданное допущение точности. В природе не существует совершенных кругов или треугольников; планеты в реальности не движутся по точным эллипсам, а если бы и двигались, то мы бы об этом не знали. Наши возможности измерения и наблюдения ограничены. Я не говорю о том, что они имеют определенные пределы; напротив, технические достижения постоянно уменьшают эти ограничения. Однако невозможно, чтобы техника работала безошибочно или вне всяких ограничений, потому что какой бы аппарат мы не изобрели, мы, в конце концов, зависим от собственных ощущений, которые не могут различить две очень похожие вещи. Легко доказать, что существуют различия, невоспринимаемые нами. Возьмем, например, три очень близкие оттенка цвета А В и С. Возможно, вы не видите никакого различия между А и В, или между В и С, но видите различие между А и С. Это показывает, что должны существовать невоспринимаемые различия между A и B и между B и C. То же самое будет истинно и в том случае, если Л, В и С будут иметь почти одинаковую длину. Измерение длин, каким бы точным оно ни было, всегда должно оставаться приблизительным, хотя и очень близким приближением.
По этой причине точные научные измерения всегда даются с учетом «вероятной ошибки». Это означает, что данный результат скорее всего не будет выходить за пределы установленной области значений вероятной ошибки. Практически он более или менее точен, но
Точность математики представляет собой абстрактную логическую точность, которая теряется, как только математические размышления применяются к реальному миру. Платон думал (и многие последовали за ним в этом убеждении), что если математика в определенном смысле истинна, то должен существовать идеальный мир, своего рода математический рай, где все происходит именно так, как описывается в учебниках по геометрии. Философ, попадая в рай (а туда, согласно Платону, попадают только философы), будет удовлетворен видом того, чего ему не хватало на Земле: совершенно прямые линии, совершенные круги, совершенные двенадцатигранники и все остальное, необходимое для блаженства. Тогда он поймет, что математика, хотя и неприменима к мирской жизни, представляет собой видение – одновременно и вспоминающее, и пророческое – лучшего мира, из которого вышли мудрецы и куда они возвращаются. Арфы и короны были менее интересны для афинского аристократа, чем для смиренного народа, создавшего христианскую мифологию. Однако христианские теологи, в противовес общим представлениям христиан, принимали многое из платоновского описания рая. В наши дни, когда такого рода вещи стали невозможными, точность стала приписываться Природе, а ученые не сомневаются в том, что универсум функционирует именно так, как его описал Ньютон. Поскольку ньютоновский мир – это мир, созданный Богом, грязный, неточный и т. п. мир, каким мы его знаем, был бы недостоин Создателя. Лишь недавно проблема математической точности, не соответствующей приблизительному характеру знания, получаемого с помощью органов чувств, получила формулировку, полностью свободную от всех теологический аллюзий.
Результатом недавних исследований этой проблемы стало привнесение во все вещи приблизительности и неточности, даже в традиционно священные области логики и арифметики. Для логиков старших поколений эти вопросы упрощались их верой в существование неизменных видов. Ими могут быть кошки и собаки, лошади и коровы; пара из каждого вида была создана Богом, пара из каждого вида спаслась в ковчеге во время потопа, пара из каждого вида вместе всегда производят потомство того же вида. Что касается человека, то не был ли он отличен от животных наличием разума, бессмертной души и знанием добра и зла? Таким образом, значения таких слов, как «собака», «лошадь», «человек», были четко определены, и любое живое существо, к которому применимо одно из этих слов, было четко отделено от других живых существ. На вопрос: «Это лошадь?», – всегда существовал недвусмысленный и бесспорный ответ. Однако для последователя эволюционной теории все меняется. Он считает, что лошади постепенно эволюционировали из животных, которые определенно не были лошадьми, и на каком-то этапе этой эволюции существовали животные, которые не были определенно лошадьми или нелошадьми. То же самое истинно и для человека. Разум по мере своего существования постепенно совершенствовался. По геологическим находкам нельзя судить, имели ли наши далекие предки бессмертные души или знание о добре и зле, даже если допустить, что мы обладаем всеми этими преимуществами. Найдено множество костей, определенно принадлежащих более или менее человекоподобным двуногим существам, но можно ли этих двуногих назвать «людьми» – это вопрос чистого соглашения.
Таким образом выясняется, что на самом деле мы не знаем, что имеем в виду под обычными повседневными словами, такими как «кошка» и «собака», «лошадь» и «человек». Того же рода неопределенность существует и в отношении наиболее точных научных терминов таких, как «метр» и «секунда». Метр определяется как расстояние между двумя отметками на определенном бруске в Париже при определенной температуре бруска. Однако эти отметки не являются точками, и температура не может быть измерена с совершенной точностью. Следовательно, мы не можем знать точно длину метра. В отношении большинства длин мы можем быть уверены, что они длиннее или короче метра. Но в отношении некоторых длин мы не можем с уверенностью сказать, длиннее они или короче метра, или же они точно метр длиной. Секунда определяется, как время размаха маятника определенной длины или как определенная часть дня. Однако мы не можем точно измерить ни длину маятника, ни длину дня. Таким образом, в отношении метра и секунды существует та же самая проблема, что и в отношении лошадей и собак, а именно, что мы не знаем точно, что обозначают эти слова.