Искусство программирования для Unix
Шрифт:
В конце концов, путаница исчезла, когда протокол TCP/IP победил, и BSD-сокеты заново утвердили важнейшую метафору Unix: "Все является потоком байтов". Стало нормой использовать BSD-сокеты как для IPC, так и для сетевого взаимодействия. Более ранние методы в обеих областях почти совершенно вышли из употребления, и программное обеспечение Unix развивалось все более индифферентно относительно того, расположены ли обменивающиеся данными компоненты на одной машине или на разных машинах. Логическим результатом этого было создание World Wide Web в 1990 - 1991 годах.
Когда в 1984 году через несколько лет после TCP IP появилась растровая графика и пример Macintosh, возникла еще более сложная проблема. Исходные GUI-интерфейсы от Xerox PARK
Однако это была простая часть проблемы. Сложной ее частью было решение — должна ли вообще Unix иметь унифицированную политику интерфейса, и если да, то какой она должна быть. Несколько различных попыток представить ее посредством частных инструментальных наборов (таких как Motif) провалились. В настоящее время в этой области конкурируют инструментарии GTK и Qt. Несмотря на то, что дебаты по этому вопросу не прекратились, постоянство различных стилей пользовательского интерфейса, рассмотренных в главе 11, впечатляет. Unix-проектирование новой школы сохранило командную строку и справилось с напряжением между подходами GUI и CLI благодаря связыванию большого количества пар CLI-ядро/GUI-интерфейс, которые могут использоваться в обоих стилях.
Как технология, персональный компьютер представил несколько главных проблем проектирования. Процессоры 386-й серии и более поздние версии были достаточно мощными для того, чтобы предоставить системам, разработанным на их основе, соотношение затрат, подобное соотношению, характерному для мини-компьютеров, рабочих станций и серверов, на которых сформировалась операционная система Unix. Истинной трудностью было изменение потенциального рынка для Unix-систем; более низкая общая стоимость аппаратного обеспечения сделала персональные компьютеры привлекательными для чрезвычайно широкой и менее технически искушенной категории пользователей.
Поставщики частных Unix-систем, привыкшие к большей прибыли от продажи более мощных систем опытным покупателям, никогда не интересовались этим рынком. Первые серьезные инициативы по направлению к настольным системам конечных пользователей исходили от сообщества открытого исходного кода и были восприняты в основном по идеологическим причинам. Согласно аналитическим исследованиям рынка, по состоянию на середину 2003 года операционная система Linux заняла около 4-5% этого рынка, что вполне сопоставимо с объемами Apple Macintosh.
Независимо от того покажет ли Linux когда-либо более высокие результаты, ответ Unix-сообщества уже ясен. Об этом уже говорилось в главе 3, при рассмотрении вопроса о заимствовании нескольких технологий (таких как XML) из других систем и натурализации GUI-интерфейсов в Unix-мире. Однако основное внимание все-таки уделяется модульности и четкому коду — созданию инфраструктуры для серьезных высоконадежных вычислений и коммуникаций.
Этот акцент подтверждается историей крупномасштабных проектов, подобных Mozilla и OpenOffice.org, которые стартовали в конце 90-х годов. В обоих указанных случаях наиболее важной темой в отклике сообщества было отнюдь не требование новых функций или соблюдение сроков поставки. Главной идеей в сообществе была неприязнь к гигантским монолитам и общее понимание того, что прежде чем эти большие программы перестанут быть препятствием, их придется облегчить, подвергнуть рефакторингу и разделить на модули.
Вопреки большому числу
20.2. Plan 9: каким представлялось будущее Unix
Известно, как обычно представляется будущее Unix. Оно было определено исследовательской группой Bell Labs, которая построила Unix, в работе под названием "Plan 9 from Bell Labs"114. Операционная система Plan 9 представляла собой попытку воссоздать Unix и сделать ее лучше.
Главной проблемой проектирования, которую конструкторы попытались разрешить в операционной системе Plan 9, была интеграция графики и повсеместного использования сети в комфортабельной Unix-подобной структуре. Они придерживались выбора Unix, организовывая промежуточный доступ к любому возможному количеству системных служб посредством единого, большого иерархического пространства имен файлов. Фактически они его улучшили. Многие средства, которые в Unix были доступны посредством различных узкоспециальных интерфейсов, подобных BSD-сокетам, fcntl(2) и ioctl(2), в операционной системе Plan 9 были доступны посредством обычных операций чтения и записи в специальные файлы аналогичные файлам устройств. Для обеспечения переносимости и простого доступа почти все интерфейсы устройств были текстовыми, а не двоичными. Большинство системных служб (включая, например, систему оконного интерфейса) представляли собой файловые серверы, содержащие специальные файлы или деревья каталогов, представляющие обслуживаемые ресурсы. Представляя все ресурсы в виде файлов, операционная система Plan 9 превратила проблему доступа к ресурсам, расположенным на различных серверах, в проблему доступа к файлам на различных серверах.
В операционной системе Plan 9 файловая модель, еще больше соответствующая духу Unix, чем модель самой Unix, была объединена с новой идеей: частным пространством имен. Каждый пользователь (а, по сути, каждый процесс) могли иметь собственное представление системных служб путем создания собственного дерева точек монтирования файловых серверов. Некоторые точки монтирования файловых серверов устанавливаются вручную пользователем, а другие автоматически устанавливаются во время регистрации пользователя в системе. Поэтому (как указано в обзорной статье "Plan 9 from Bell Labs") "/dev/cons всегда ссылается на терминальное устройство, a /bin/date на корректную версию команды date, однако определение файлов, которые должны быть представлены этими именами, зависит от различных обстоятельств, таких как архитектура машины, выполняющей команду date".
Наиболее важная особенность операционной системы Plan 9 заключается в том, что все подключенные файловые серверы предоставляют одинаковый интерфейс, подобный файловой системе, независимо от скрытой за ними реализации. Некоторые из них могут соответствовать локальным файловым системам, некоторые — удаленным файловым системам, доступ к которым происходит по сети, некоторые могут соответствовать экземплярам системных серверов, запущенных в пользовательском пространстве (например, система оконного интерфейса или альтернативный набор сетевых протоколов), а некоторые могут соответствовать интерфейсам ядра. Для пользователей и клиентских программ все описанные случаи выглядят одинаково.