Чтение онлайн

на главную

Жанры

Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:

Конечно, такое объяснение на пальцах не может заменить полного расчета, уже, к счастью, проделанного для огромного числа хороших фильтров. Мы вернемся к схемам активных фильтров в разд. 5.06.

5.04. Критерии режима работы фильтра Ки

При анализе фильтров и при расчете их параметров всегда используются некоторые стандартные термины и имеет смысл придерживаться их с самого начала. Частотная область. Наиболее очевидной характеристикой фильтра является зависимость его коэффициента передачи от частоты; типичный случай — характеристика фильтра нижних частот, показанная на рис. 5.7.

Рис. 5.7. Частотные

характеристики фильтров, а — коэффициент усиления (логарифмический масштаб), б и в — сдвиг фазы и временное запаздывание (линейный масштаб).

Здесь полоса пропускания представляет собой область частот, которые сравнительно мало ослабляются фильтром. Чаще всего считается, что полоса пропускания простирается до точки, соответствующей значению затухания — 3 дБ, но для некоторых фильтров (среди них замечательны фильтры с «равновеликими пульсациями») граница полосы пропускания может быть определена несколько иначе. Внутри же полосы пропускания характеристика может быть неравномерной, или пульсирующей, с определенным диапазоном (полосой) пульсаций характеристики, как это и показано на рисунке. Частота среза fс определяет границу полосы пропускания. Далее характеристика фильтра проходит через переходную область (известную также как «склон» характеристики фильтра) к полосе задерживания — области значительного ослабления. Полосу задерживания можно определить через некоторое минимальное затухание, например 40 дБ.

Наряду с характеристикой коэффициента передачи в частотной области важен и другой параметр, а именно сдвиг фазы выходного сигнала по отношению к входному. Другими словами, нас интересует комплексная частотная характеристика фильтра, которая обычно обозначается как H(s), где s = j; s и — комплексные величины. Фазочастотная характеристика важна, поскольку сигнал, целиком расположенный по частоте в полосе пропускания, будет искажен, если время запаздывания при прохождении через фильтр не будет постоянным для различных частот.

Постоянство временной задержки (для всех частот) соответствует линейному возрастанию фазового сдвига в зависимости от частоты, поэтому термин фильтр с линейной фазочастотной характеристикой применяется к идеальному в этом отношении фильтру. На рис. 5.8 показаны типовые графики фазочастотной характеристики и амплитудно-частотной характеристики фильтра нижних частот, который явно не является линейно-фазовым фильтром. Графики фазочастотной характеристики лучше всего строить в линейном по частоте масштабе.

Рис. 5.8. Фазовая и амплитудно-частотная характеристики 8-полюсного фильтра Чебышева нижних частот. Размах пульсаций (неравномерность) 2 дБ.

Временная область. Свойства фильтров, как и любых других схем переменного тока, могут быть описаны также их параметрами во временн'oй области, а именно временем нарастания, выбросом, пульсациями и временем

установления. Эти свойства важны, в частности, там, где должны использоваться ступенчатые или импульсные сигналы. На рис. 5.9 показана типичная переходная характеристика фильтра нижних частот.

Рис. 5.9.

Здесь время нарастания представляет собой время, необходимое для достижения сигналом 90 % своего конечного значения, в то время как время установления — это время, необходимое для того, чтобы сигнал попал в некоторую окрестность конечного значения и там остался. Выброс и колебания описывают нежелательные свойства фильтра, смысл которых ясен из их названия.

5.05. Типы фильтров

Предположим, что требуется фильтр нижних частот с плоской характеристикой в полосе пропускания и резким переходом к полосе подавления. Окончательный же наклон характеристики в полосе задерживания всегда будет 6n дБ/октава, где n — число «полюсов». На каждый полюс необходим один конденсатор (или катушка индуктивности), поэтому требования к окончательной скорости спада частотной характеристики фильтра, грубо говоря, определяют его сложность.

Теперь предположим, что вы решили использовать 6-полюсный фильтр нижних частот. Вам гарантирован окончательный спад характеристики на высоких частотах 36 дБ/октава. В свою очередь теперь можно оптимизировать схему фильтра в смысле обеспечения максимально плоской характеристики в полосе пропускания за счет уменьшения крутизны перехода от полосы пропускания к полосе задерживания. С другой стороны, допуская некоторую неравномерность характеристики в полосе пропускания, можно добиться более крутого перехода от полосы пропускания к полосе задерживания. Третий критерий, который может оказаться важным, описывает способность фильтра пропускать сигналы со спектром, лежащим в полосе пропускания, без искажений их формы, вызываемых фазовыми сдвигами. Можно также интересоваться временем нарастания, выбросом и временем установления.

Известны методы проектирования фильтров, пригодные для оптимизации любой из этих характеристик или их комбинаций. Действительно разумный выбор фильтра происходит не так, как описано выше; как правило, сначала задаются требуемая равномерность характеристики в полосе пропускания и необходимое затухание на некоторой частоте вне полосы пропускания и другие параметры. После этого выбирается наиболее подходящая схема с количеством полюсов, достаточным для того, чтобы удовлетворялись все эти требования. В следующих нескольких разделах будут рассмотрены три наиболее популярных типа фильтров, а именно фильтр Баттерворта (максимально плоская характеристика в полосе пропускания), фильтр Чебышева (наиболее крутой переход от полосы пропускания к полосе подавления) и фильтр Бесселя (максимально плоская характеристика времени запаздывания). Любой из этих типов фильтров можно реализовать с помощью различных схем фильтров; некоторые из них мы обсудим позже. Все они равным образом годятся для построения фильтров нижних и верхних частот и полосовых фильтров.

Фильтры Баттерворта и Чебышева. Фильтр Баттерворта обеспечивает наиболее плоскую характеристику в полосе пропускания, что достигается ценой плавности характеристики в переходной области, т. е. между полосами пропускания и задерживания. Как будет показано дальше, у него также плохая фазочастотная характеристика. Его амплитудно-частотная характеристика задается следующей формулой:

Uвых/Uвх = 1/[1 + (f/fc)2n]1/2

Поделиться:
Популярные книги

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

Адепт. Том 1. Обучение

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
9.27
рейтинг книги
Адепт. Том 1. Обучение

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Игра топа

Вяч Павел
1. Игра топа
Фантастика:
фэнтези
6.86
рейтинг книги
Игра топа