Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Конечно, такое объяснение на пальцах не может заменить полного расчета, уже, к счастью, проделанного для огромного числа хороших фильтров. Мы вернемся к схемам активных фильтров в разд. 5.06.
5.04. Критерии режима работы фильтра Ки
При анализе фильтров и при расчете их параметров всегда используются некоторые стандартные термины и имеет смысл придерживаться их с самого начала. Частотная область. Наиболее очевидной характеристикой фильтра является зависимость его коэффициента передачи от частоты; типичный случай — характеристика фильтра нижних частот, показанная на рис. 5.7.
Рис. 5.7. Частотные
Здесь полоса пропускания представляет собой область частот, которые сравнительно мало ослабляются фильтром. Чаще всего считается, что полоса пропускания простирается до точки, соответствующей значению затухания — 3 дБ, но для некоторых фильтров (среди них замечательны фильтры с «равновеликими пульсациями») граница полосы пропускания может быть определена несколько иначе. Внутри же полосы пропускания характеристика может быть неравномерной, или пульсирующей, с определенным диапазоном (полосой) пульсаций характеристики, как это и показано на рисунке. Частота среза fс определяет границу полосы пропускания. Далее характеристика фильтра проходит через переходную область (известную также как «склон» характеристики фильтра) к полосе задерживания — области значительного ослабления. Полосу задерживания можно определить через некоторое минимальное затухание, например 40 дБ.
Наряду с характеристикой коэффициента передачи в частотной области важен и другой параметр, а именно сдвиг фазы выходного сигнала по отношению к входному. Другими словами, нас интересует комплексная частотная характеристика фильтра, которая обычно обозначается как H(s), где s = j; s и — комплексные величины. Фазочастотная характеристика важна, поскольку сигнал, целиком расположенный по частоте в полосе пропускания, будет искажен, если время запаздывания при прохождении через фильтр не будет постоянным для различных частот.
Постоянство временной задержки (для всех частот) соответствует линейному возрастанию фазового сдвига в зависимости от частоты, поэтому термин фильтр с линейной фазочастотной характеристикой применяется к идеальному в этом отношении фильтру. На рис. 5.8 показаны типовые графики фазочастотной характеристики и амплитудно-частотной характеристики фильтра нижних частот, который явно не является линейно-фазовым фильтром. Графики фазочастотной характеристики лучше всего строить в линейном по частоте масштабе.
Рис. 5.8. Фазовая и амплитудно-частотная характеристики 8-полюсного фильтра Чебышева нижних частот. Размах пульсаций (неравномерность) 2 дБ.
Временная область. Свойства фильтров, как и любых других схем переменного тока, могут быть описаны также их параметрами во временн'oй области, а именно временем нарастания, выбросом, пульсациями и временем
Рис. 5.9.
Здесь время нарастания представляет собой время, необходимое для достижения сигналом 90 % своего конечного значения, в то время как время установления — это время, необходимое для того, чтобы сигнал попал в некоторую окрестность конечного значения и там остался. Выброс и колебания описывают нежелательные свойства фильтра, смысл которых ясен из их названия.
5.05. Типы фильтров
Предположим, что требуется фильтр нижних частот с плоской характеристикой в полосе пропускания и резким переходом к полосе подавления. Окончательный же наклон характеристики в полосе задерживания всегда будет 6n дБ/октава, где n — число «полюсов». На каждый полюс необходим один конденсатор (или катушка индуктивности), поэтому требования к окончательной скорости спада частотной характеристики фильтра, грубо говоря, определяют его сложность.
Теперь предположим, что вы решили использовать 6-полюсный фильтр нижних частот. Вам гарантирован окончательный спад характеристики на высоких частотах 36 дБ/октава. В свою очередь теперь можно оптимизировать схему фильтра в смысле обеспечения максимально плоской характеристики в полосе пропускания за счет уменьшения крутизны перехода от полосы пропускания к полосе задерживания. С другой стороны, допуская некоторую неравномерность характеристики в полосе пропускания, можно добиться более крутого перехода от полосы пропускания к полосе задерживания. Третий критерий, который может оказаться важным, описывает способность фильтра пропускать сигналы со спектром, лежащим в полосе пропускания, без искажений их формы, вызываемых фазовыми сдвигами. Можно также интересоваться временем нарастания, выбросом и временем установления.
Известны методы проектирования фильтров, пригодные для оптимизации любой из этих характеристик или их комбинаций. Действительно разумный выбор фильтра происходит не так, как описано выше; как правило, сначала задаются требуемая равномерность характеристики в полосе пропускания и необходимое затухание на некоторой частоте вне полосы пропускания и другие параметры. После этого выбирается наиболее подходящая схема с количеством полюсов, достаточным для того, чтобы удовлетворялись все эти требования. В следующих нескольких разделах будут рассмотрены три наиболее популярных типа фильтров, а именно фильтр Баттерворта (максимально плоская характеристика в полосе пропускания), фильтр Чебышева (наиболее крутой переход от полосы пропускания к полосе подавления) и фильтр Бесселя (максимально плоская характеристика времени запаздывания). Любой из этих типов фильтров можно реализовать с помощью различных схем фильтров; некоторые из них мы обсудим позже. Все они равным образом годятся для построения фильтров нижних и верхних частот и полосовых фильтров.
Фильтры Баттерворта и Чебышева. Фильтр Баттерворта обеспечивает наиболее плоскую характеристику в полосе пропускания, что достигается ценой плавности характеристики в переходной области, т. е. между полосами пропускания и задерживания. Как будет показано дальше, у него также плохая фазочастотная характеристика. Его амплитудно-частотная характеристика задается следующей формулой:
Uвых/Uвх = 1/[1 + (f/fc)2n]1/2