Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Амплитудно-частотные характеристики всех этих типов даны на соответствующих графиках (рис. 5.17).
Рис. 5.17. Графики
Для конструирования n– полюсного фильтра (при четном n) нужно соединить каскадно n/2 секций на ИНУН. Рассматриваются только фильтры четного порядка, поскольку для фильтра нечетного порядка нужно столько же операционных усилителей, сколько и для фильтра на единицу большего порядка. В каждой секции R1 = R2 = R и C1 = С2 = С. Как и обычно в схемах на операционных усилителях, значение R выбирается в диапазоне от 10 до 100 кОм. (Резисторов с малым номиналом сопротивления лучше избегать, поскольку на высоких частотах возрастающее выходное полное сопротивление разомкнутого контура операционного усилителя добавляется к сопротивлению резистора, внося ошибку в расчет.) Тогда все, что вам нужно сделать — это установить коэффициент усиления каждого каскада К согласно табличным данным. Для n– полюсного фильтра потребуется n/2 обращений к таблице - по числу секций.
Фильтры Баттерворта нижних частот. Если используется фильтр Баттерворта, то параметры всех секций имеют одинаковые значения R и С, определяемые соотношением RC = 1/2fс, где fс — частота, соответствующая значению ослабления всего фильтра, равному — 3 дБ. Чтобы построить, например, 6-полюсный фильтр Баттерворта нижних частот, мы соединяем каскадно три вышеописанные секции с коэффициентами усиления, равными соответственно 1,07, 1,59 и 2,48 (желательно именно в указанном порядке, во избежание возни с динамическим диапазоном) и подбором идентичных для всех секций параметров R и С устанавливаем точку, отвечающую значению —3 дБ. Описанная в разд. 8.31 схема управления телескопом представляет собой подобный пример со значением fс = 88,4 Гц (R = 180 кОм, С = 0,01 мкФ).
Фильтры нижних частот Бесселя и Чебышева. Ненамного сложнее построить на ИНУН фильтр Бесселя или Чебышева. Опять-таки соединим каскадно несколько двухполюсных фильтров на ИНУН с предписанным для каждой секции коэффициентом усиления. Снова в каждой секции зададим R1 = R2 = R и C1 = С2 = С. Но теперь, в отличие от ситуации с фильтром Баттерворта, произведение RC будет для каждой секции свое и должно вычисляться с помощью нормирующего множителя fn (его значения для каждой секции приведены в табл. 5.2) по формуле RC = 1/2fсfn. Здесь через fc обозначена точка, отвечающая значению —3 дБ, для фильтра Бесселя и граница полосы пропускания — для фильтра Чебышева, т. е. это частота, на которой амплитудно-частотная характеристика спадает ниже диапазона неравномерности при переходе к полосе задерживания. Например, характеристика фильтра Чебышева нижних частот с неравномерностью 0,5 дБ и fc = 100 Гц будет
Фильтры верхних частот. Чтобы построить фильтр верхних частот, используем показанную ранее конфигурацию фильтра нижних частот, т. е. поменяем местами R и С. При этом для фильтра Баттерворта ничего больше не изменится (значения R, С и К останутся те же). Для фильтров Бесселя и Чебышева сами значения К останутся те же, а нормирующий множитель fн должен быть обратный, т. е. для каждой секции новое значение равно fн = 1/fн (как указано в табл. 5.2).
Полосовой фильтр получается при каскадном соединении фильтров верхних частот и фильтров нижних частот с перекрывающимися полосами пропускания. Полосноподавляющий же фильтр можно получить с помощью схемы сложения выходных сигналов фильтров верхних частот и фильтров нижних частот с неперекрывающимися полосами пропускания. Однако такие каскадные фильтры не очень пригодны там, где нужны фильтры с высокой добротностью (полосовые фильтры с крутой переходной областью) вследствие большой чувствительности индивидуальных (непарных) фильтровых секции к значениям параметров элементов. В таких случаях следует применять высокодобротную однокаскадную полосовую схему (т. е. описанную ранее полосовую схему на ИНУН или рассматриваемые далее биквадратные фильтры и фильтры на основе метода переменных состояния) вместо многокаскадного фильтра. Даже однокаскадный двухполюсный фильтр может иметь характеристику с крайне острым пиком. Информацию о таких конструкциях фильтров можно найти в справочниках.
В фильтрах на ИНУН используется минимальное число элементов (один операционный усилитель на два полюса характеристики), при этом они дают дополнительный выигрыш в виде неинвертирующего коэффициента усиления, низкого выходного полного сопротивления, малого разброса значений параметров, простоты регулировки коэффициента усиления и способности работать при большом коэффициенте усиления или высокой добротности. Их недостаток — высокая чувствительность к изменениям параметров элементов и коэффициента передачи усилителя, кроме того, они не годятся для построения перестраиваемых фильтров с устойчивой характеристикой.
Упражнение 5.3. Спроектируйте на ИНУН 6-полюсный фильтр Чебышева нижних частот с неравномерностью в полосе пропускания 0,5 дБ и частотой среза fс =100 Гц. Какое ослабление будет на частоте, равной 1,5fс?
5.08. Фильтры, построенные на основе метода переменных состояния
Изображенный на рис. 5.18 двухполюсный фильтр куда более сложен по сравнению с фильтрами на ИНУН, но он широко применяется благодаря повышенной устойчивости и легкости регулировки. Он называется фильтром на основе метода переменных состояния.
Рис. 5.18. Фильтр, построенный на основе метода переменных состояния.
Этот фильтр выпускается в виде интегральной схемы фирмами National (AF100 и AF150), Burr-Brown (серия UAF) и другими. Поскольку этот фильтр является готовым модулем, то все элементы у него встроенные, за исключением резисторов RG, RQ и двух RF. Среди прочих достоинств этой схемы существенна возможность путем коммутации выходов получать из одной схемы фильтры верхних и нижних частот, а также полосовой фильтр. Кроме того, частоту фильтра можно регулировать при неизменном значении добротности Q (или неизменной полосе пропускания — по выбору) характеристики в полосе пропускания. Как при работе с фильтрами на ИНУН, несколько секций могут быть соединены каскадно для создания фильтров более высоких порядков.
Изготовители этих интегральных схем предлагают для пользователей подробные расчетные формулы и таблицы. Они дают рекомендации по выбору номиналов сопротивлений внешних резисторов для получения фильтров Баттерворта, Бесселя и Чебышева разных порядков; при этом можно получать фильтры с характеристиками верхних, нижних частот или полосовые и полосноподавляющие. Привлекательной особенностью этих гибридных схем является то, что в модуль встроены конденсаторы; так что остается добавить только внешние резисторы.