Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
где n определяет порядок фильтра (число полюсов). Увеличение числа полюсов дает возможность сделать более плоским участок характеристики в полосе пропускания и увеличить крутизну спада от полосы пропускания к полосе подавления, как это показано на рис. 5.10.
Рис. 5.10. Нормированные характеристики фильтров нижних частот Баттерворта. Обратите внимание на увеличение крутизны спада характеристики с увеличением порядка фильтра.
Выбирая
В большинстве применений самым существенным обстоятельством является то, что неравномерность характеристики в полосе пропускания не должна превышать некоторой определенной величины, скажем 1 дБ. Фильтр Чебышева отвечает этому требованию, при этом допускается некоторая неравномерность характеристики во всей полосе пропускания, но при этом сильно увеличивается острота ее излома. Для фильтра Чебышева задают число полюсов и неравномерность в полосе пропускания. Допуская увеличение неравномерности в полосе пропускания, получаем более острый излом.
Амплитудно-частотная характеристика этого фильтра задается следующим соотношением:
Uвых/Uвх = 1/[1 + 2Cn2(f/fc)]1/2
где Cn– полином Чебышева первого рода степени n, а — константа, определяющая неравномерность характеристики в полосе пропускания. Фильтр Чебышева, как и фильтр Баттерворта имеет фазочастотные характеристики, далекие от идеальных. На рис. 5.11 представлены для сравнения характеристики 6-полюсных фильтров нижних частот Чебышева и Баттерворта.
Рис. 5.11. Сравнение характеристик некоторых обычно применяемых 6-полюсных фильтров нижних частот. Характеристики одних и тех же фильтров изображены и в логарифмическом (вверху), и в линейном (внизу) масштабе. 1 — фильтр Бесселя; 2 — фильтр Баттерворта; 3 — фильтр Чебышева (пульсации 0,5 дБ).
Как легко заметить, и тот, и другой намного лучше 6-полюсного RC-фильтра. На самом деле фильтр Баттерворта с максимально плоской характеристикой в полосе пропускания не столь привлекателен, как это может показаться, поскольку в любом случае приходится мириться с некоторой неравномерностью в полосе пропускания (для фильтра Баттерворта это будет постепенное понижение характеристики при приближении к частоте fс, а для фильтра Чебышева — пульсации, распределенные по всей полосе пропускания).
Кроме того, активные фильтры, построенные из элементов, номиналы которых имеют некоторый допуск, будут обладать характеристикой, отличающейся от расчетной, а это значит, что в действительности на характеристике фильтра Баттерворта всегда будет иметь место некоторая неравномерность в полосе пропускания. На рис. 5.12 проиллюстрировано влияние наиболее нежелательных отклонений значений емкости конденсатора и сопротивления, резистора на характеристику фильтра.
В свете вышеизложенного весьма рациональной структурой является фильтр Чебышева. Иногда его называют равноволновым фильтром, так как его характеристика в области перехода имеет большую крутизну за счет того, что по полосе пропускания распределено несколько равновеликих пульсаций, число которых возрастает
Мысль о том, что можно мириться с пульсациями характеристики в полосе пропускания ради увеличения крутизны переходного участка, доводится до своего логического завершения в идее так называемого эллиптического фильтра (или фильтра Кауэра), в котором допускаются пульсации характеристики как в полосе пропускания, так и в полосе задерживания ради обеспечения крутизны переходного участка даже большей, чем у характеристики фильтра Чебышева. С помощью ЭВМ можно сконструировать эллиптические фильтры так же просто, как и классические фильтры Чебышева и Баттерворта.
На рис. 5.13 представлено графическое задание амплитудно-частотной характеристики фильтра. В этом случае (фильтр нижних частот) определяются допустимый диапазон коэффициента передачи фильтра (т. е. неравномерность) в полосе пропускания, минимальная частота, на которой характеристика покидает полосу пропускания, максимальная частота, где характеристика переходит в полосу задерживания, и минимальное затухание в полосе задерживания.
Рис. 5.13. Задание параметров частотной характеристики фильтра.
Фильтры Бесселя. Как было установлено ранее, амплитудно-частотная характеристика фильтра не дает о нем полной информации. Фильтр с плоской амплитудно-частотной характеристикой может иметь большие сдвиги фаз. В результате этого форма сигнала, спектр которого лежит в полосе пропускания, будет искажена при прохождении через фильтр. В ситуации, при которой форма сигнала имеет первостепенное значение, желательно иметь в распоряжении линейно-фазовый фильтр (фильтр с постоянным временем запаздывания). Предъявление к фильтру требования обеспечения линейного изменения сдвига фазы в зависимости от частоты эквивалентно требованию постоянства времени запаздывания для сигнала, спектр которого расположен в полосе пропускания, т. е. отсутствия искажений формы сигнала. Фильтр Бесселя (также называемый фильтром Томсона) имеет наиболее плоский участок кривой времени запаздывания в полосе пропускания, подобно тому как фильтр Баттерворта имеет наиболее плоскую амплитудно-частотную характеристику. Чтобы понять, какое улучшение во временной области дает фильтр Бесселя, посмотрите на рис. 5.14, где изображены нормированные по частоте графики времени запаздывания для 6-полюсных фильтров нижних частот Бесселя и Баттерворта.
Рис. 5.14. Сравнение временных запаздываний для 6-полюсных фильтров нижних частот Бесселя (1) и Баттерворта (2). Фильтр Бесселя благодаря своим превосходным свойствам во временной области дает наименьшее искажение формы сигнала.
Плохая характеристика времени запаздывания фильтра Баттерворта обуславливает появление эффектов типа выброса при прохождении через фильтр импульсных сигналов. С другой же стороны, за постоянство времен запаздывания у фильтра Бесселя приходится расплачиваться тем, что его амплитудно-частотная характеристика имеет еще более пологий переходной участок между полосами пропускания и задерживания, чем даже у характеристики фильтра Баттерворта.