Чтение онлайн

на главную - закладки

Жанры

История электротехники
Шрифт:

Впервые в мире солнечная панель из арсенид-галлия площадью 1 м была разработана в Государственном научно-производственном предприятии «Квант» (ГНПП «Квант») в 1967 г. и применена на КА при полете к планете Венера и обеспечила при температуре 120 °С заряд блока химических батарей спускаемого на поверхность планеты аппарата непосредственно перед началом спуска. В дальнейшем на все автоматические станции, направляемые к Венере, стали устанавливать панели из арсенида галлия. Существенным этапом в развитии работ по арсенид-галлиевым солнечным панелям явилась разработка панели для автоматических самоходных аппаратов, действующих на поверхности Луны, «Луноход-1» и «Луноход-2» (1972 г.). Работая в экстремальных условиях на лунной поверхности при

рабочих температурах до 150 °С в течение многих лунных суток, данная панель полностью удовлетворяла по энергетике программу исследований, при этом был получен наивысший результат того времени по удельной мощности 1000 Вт/м2 при температуре 140–150 °С. Наиболее крупной разработкой в области арсенид-галлиевых панелей является СБ для орбитальной станции «Мир». За 8 лет летных испытаний арсенид-галлиевые панели, имевшие начальную выходную мощность 10 кВт, обнаружили высокую стабильность характеристик (суммарная средняя деградация не более 3,5% в год) в сложнейших условиях эксплуатации: при наличии существенных затенений, воздействии двигателей многочисленных стыкуемых аппаратов и собственной воздушной атмосферы станции.

4. Разработка тонкопленочной технологии СЭ на основе аморфного кремния, которые относятся к новому поколению панелей СБ для энергоснабжения космических аппаратов, действующих на различных орбитах. Основная цель — создание ультралегких панелей с максимальным отношением вырабатываемой мощности к массе, существенно превышающим достигнутые на сегодня или планируемые результаты на других типах СБ. Такие ультралегкие панели СБ можно будет применять для широкого класса орбит, в особенности в случаях, когда определяющей является стоимость запуска космического аппарата, в частности для геостационарных орбит. Другой важнейшей особенностью данного направления является возможность создания солнечных панелей рулонного типа, обладающих максимальной плотностью упаковки и наибольшим отношением вырабатываемой мощности к объему, занимаемому солнечными панелями. Эта особенность позволяет считать предполагаемый тип солнечных панелей перспективным также для низкоорбитальных полетов.

Наконец, в силу принципиальных особенностей технологии, в которой активная структура осаждается непосредственно на подложку из газовой фазы, открываются возможности организации полностью автоматизированного цикла, что, в свою очередь, приведет к снижению стоимости рулонных аморфнокремниевых батарей по сравнению с монокристаллическими аналогами.

Наибольших успехов в этой области добилась фирма ЕСД («Energy Conversion Di-vices»), США, создавшая два завода по производству аморфных СБ (в первую очередь для наземного использования).

ГНПП «Квант» и фирма ЕСД учредили в 1990 г. совместное предприятие «Совлакс», особенностью продукции которого является использование впервые в мировой практике двух-, трехпереходных каскадных структур СЭ, что создает предпосылки для получения максимального КПД и стабильности характеристик.

К числу перспективных направлений исследований по созданию новых СЭ следует отнести также работы по использованию в качестве фотоэлектрического материала фосфида индия. СЭ на этой основе работоспособны при температуре до 120°С и обладают приблизительно на 15.% большей радиационной стойкостью, чем арсенид-галлиевые. Возникающие под действием радиации дефекты в объеме этого материала, снижающие значения генерируемого СЭ тока, относительно легко ликвидируются в процессе эксплуатации естественным образом под действием солнечной радиации при температуре 80–100 °С. В то время как организовать отжиг кремниевых или арсенид-галлиевых батарей, для чего требуются температуры 450 и 250 °С соответственно, в процессе эксплуатации практически невозможно.

Таким образом, основными тенденциями в совершенствовании СЭ в настоящее время являются:

1) переход на тонкопленочные структуры на базе аморфного кремния, фосфида индия, гетероструктур на

основе диселенидов индия и меди, поликристаллических пленок теллурида кадмия и др., чем достигается существенное улучшение массогабаритных параметров и повышение радиационной стойкости;

2) построение каскадных композиций, что позволяет избирательно и эффективно преобразовывать все участки солнечного спектра излучения, обеспечивая высокий результирующий КПД.

В частности, американская фирма «Spectrolab Inc.» разработала и установила на спутниках СБ мощностью 10 кВт, построенную на СЭ, с КПД 21,6%. Эти элементы имеют двухслойную структуру. Наружный слой состоит из фосфата галлия с индием, он преобразует коротковолновую часть спектра. Внутренний слой из арсенида галлия использует длинноволновую часть. Подложка элемента изготовлена из германия. К числу ведущих зарубежных фирм в области разработки новых солнечных элементов помимо упомянутой фирмы следует отнести «Sharp» (Япония), «Telefunken» (Германия).

Определенный интерес представляют разработки СБ с использованием концентраторов (параболических зеркал, линз Френеля, фоконов), увеличивающих степень концентрации в десятки раз. При этом достигается более эффективное использование фотоэлектрического материала. Однако возникают трудности с компоновкой батарей и с массогабаритными удельными характеристиками. Кроме того, при больших концентрациях во избежание перегрева элементов необходимо предусматривать эффективной отвод теплоты с помощью специальных устройств.

Крупномасштабное внедрение СБ в сочетании с накопителями энергии, начавшееся в 70-е годы, потребовало разработки специальных серебряно-цинковых аккумуляторов, способных работать в буферном режиме в существенно жестких условиях эксплуатации. Для обеспечения работоспособности их в циклическом режиме от 30 сут до года и больше были созданы новые сепарационные материалы и электролиты со специальными добавками.

В 80-е годы при реализации программы спускаемых аппаратов «Венера» и «Союз» возникло дополнительное весьма жесткое требование — устойчивость буферных батарей при любой ориентации к удару. Решение этой задачи привело к существенному пересмотру всей конструкции буферных батарей и введению демпфирующих элементов.

Для обеспечения питания аппаратов типа «Союз» и серии «Космос» были созданы герметичные оснащенные специальными клапанами буферные батареи, способные функционировать в открытом космосе. Условия эксплуатации аппаратов типа «Марс» обусловили внесение в конструкцию батареи специальных газопоглощающих устройств, предотвращающих выделение водорода в окружающее пространство отсека.

Параллельно не прекращалось совершенствование серебряно-цинковых аккумуляторов одноразового использования с целью повышения их удельных энергетических параметров и доведения срока их службы до максимального в автономном режиме без восполнения энергией от СБ.

Вслед за первым искусственным спутником Земли такие аккумуляторы применялись на аппаратах «Восток», «Восход», первых «Союзах», «Лунниках» и типа «Зонд». Аналогичные аккумуляторы использовались на американских космических аппаратах «Джемени», «Аполлон». Для ряда задач потребовалось создание принципиально новых сухозаряженных СЦ-аккумуляторов (ряд аппаратов типа «Космос») с длительным сроком сохранности и относительно быстрым приведением в рабочее состояние.

Наиболее значительной работой в этом направлении явилось энергообеспечение космической системы «Энергия-Буран», где требовалась рекордная для космических задач емкость до 130–140 А•ч при удельной энергии до 150 Вт•ч/кг. Такие аккумуляторы были созданы в ГНПП «Квант» и полностью обеспечили выполнение программы. В настоящее время за счет увеличения коэффициента использования активных масс, применения новых высокодисперсных серебряно-цинковых структур, составов электролитов и сепарационных материалов ведутся исследования по доведению ресурса батарей до 1,5–2 лет при удельных параметрах 120–130 Вт•ч/кг.

Поделиться:
Популярные книги

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Измена. Истинная генерала драконов

Такер Эйси
1. Измены по-драконьи
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Истинная генерала драконов

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Странник

Седой Василий
4. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Странник

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II