Как растения защищаются от болезней
Шрифт:
Hg++>Ag+>Cu++>Ni++>Fe+++>Cd+++>Zn++> >Со++>Мп++.
К числу абиотических элиситеров относятся также некоторые ингибиторы отдельных метаболитических процессов (иодацетат, фтористый натрий, 2,4-динитрофенол, некоторые антибиотики, фенольные соединения, цитокинины, циклический аденозинмонофосфат и, наконец, многие пестициды). Элиситерами являются и некоторые физические воздействия, например облучение ультрафиолетовыми лучами,
По-видимому, нет общей структуры вещества, которое определило бы его принадлежность к злиситерам, так же как и нет какой-либо определенной мишени для их действия у растительных клеток. В качестве элиситеров могут выступать вещества, различным образом повреждающие растительные клетки.
Если сравнить действие абиотических элиситеров с биотическими, то налицо их отличие, ио крайней мере по двум пунктам.
1. Биотические элиситеры вызывают образование фитоалексинов в значительно больших концентрациях, чем абиотические. Так, абиотические элиситеры оказываются активными в концентрациях 10– 3—10– 5 М, тогда как биотические — 10– 9 М и ниже, как мы это уже говорили. Причем даже в максимально индуцирующих концентрациях абиотические элиситеры редко могут вызвать образование фитоалексинов в концентрациях, приводящих к полному подавлению роста паразитов.
2. Под влиянием абиотических элиситеров в растительных тканях индуцируются не только фитоалексины, но и ряд других соединений, не имеющих никакого отношения к реакции несовместимости паразита и хозяина. Наоборот, биотические элиситеры вызывают прицельное индуцирование только фитоалексинов.
Недавно удалось выявить разницу в действии биотических и абиотических элиситеров. Оказалось, что накопление фитоалексинов под действием биотических элиситеров происходит за счет их интенсивного синтеза, который значительно преобладает над процессом их распада — метаболизма. Абиотические элиситеры действуют наоборот. Иными словами, многие абиотические агенты, повреждающие клетку, подавляют процесс метаболизма ксенобиотиков — фитоалексинов, благодаря чему последние и накапливаются. Более того, в силу повреждения систем метаболизма они могут сохраняться в этих тканях в течение определенного времени, тогда как под действием биотических элиситеров фитоалексины после достижения фунгитоксических концентраций исчезают из растительных тканей, поскольку элиситер не повреждает системы их метаболизма.
В свете этих данных по-новому можно представить себе, как отражается на содержании фитоалексинов обработка растения теми пестицидами, которые обладают способностью вызывать их образование. Под воздействием таких пестицидов индуцируется накопление в растительных тканях фитоалексинов, которые сохраняются в ткани, а не исчезают из нее, поскольку процессы их метаболизма подавлены. Обработка пестицидами может происходить несколько раз в сезон, поэтому количество фитоалексинов в растительных тканях все более и более возрастает и может накопиться в них в токсических для человека и животных концентрациях. Конечно, совсем не обязательно, чтобы все пестициды служили элиситерами фитоалексинов и при этом ингибировали их метаболизм. Число таких элиситеров достаточно велико, и трудно представить себе, чтобы все они имели единый механизм действия. Однако при испытании и отборе новых пестицидов следует все же иметь в виду их нежелательную способность вызывать накопление фитоалексинов в растительных тканях.
Итак, предполагается, что на поверхности паразитарных микроорганизмов имеются определенные вещества, которые распознаются растением и являются для него элиситерами защитных реакций, чаще всего реакции СВЧ. Казалось бы, все просто и ясно. Элиситеры вызывают СВЧ-гибель клеток хозяина и образование фитоалексинов, которые накапливаются в отмерших клетках и губят присутствующего там паразита. Однако в этой простой схеме не все концы сходятся с концами.
1. Элиситер паразита, нанесенный на поверхность растительной ткани, вызывает гибель
2. СВЧ-гибель клеток растения наступает вскоре после соприкосновения с элиситером паразита. Так, клетка листа или черешка картофеля погибает уже спустя 30 минут после того, как ее цитоплазматическая мембрана приходит в соприкосновение с гифой несовместимой расы возбудителя фитофтороза, тогда как фитоалексины начинают образовываться лишь спустя несколько часов после гибели клеток. Более того, если с помощью определенных приемов задержать СВЧ-гибель клетки, то настолько же задерживается и начало образования фитоалексина, и, наоборот, если СВЧ-гибель ускоряется, то ускоряется и образование фитоалексина.
Создается впечатление, что ответная реакция растительной ткани включает в себя как минимум два последовательных этапа: элиситер вызывает СВЧ-гибель соприкасающихся с ним растительных клеток, а уже СВЧ-реакция служит как бы вторичным сигналом к образованию фитоалексинов. Можно было бы предполагать, что сигнал к их возникновению передает некое вещество, которое освобождается из погибших (или погибающих?) клеток растения-хозяина.
И такое вещество было недавно обнаружено в сое американским фитоиммунологом П. Альберсхеймом. Им оказался фрагмент клеточных стенок сон, состоящий из 12 молекул галактуроновой кислоты, соединенных между собой ?-1,4-глюкозидными связями. Близкий по строению фрагмент удалось выделить из препарата цитрусового пектина.
Полученные данные позволили понять механизм индукции фитоалексинов с помощью пектолитических ферментов, которые воздействуют на клеточную стенку растения и высвобождают из нее пектиновый фрагмент, являющийся своеобразным химическим посыльным, или вторичным элиситером, вызывающим образование фитоалексинов в прилегающих здоровых клетках. По-видимому, в погибающих под действием элиситеров паразита растительных клетках также активизируются собственные ферментные системы, разрушающие клеточную стенку и высвобождающие индуцирующий фитоалексины фрагмент. А поскольку гибель или повреждение клеток вызывают многие химикаты и физические воздействия, то неудивительно, что в ответ на их обработку в растительных тканях образуются фитоалексины. Ведь недаром их количество часто прямо пропорционально степени токсичности элиситера для клетки растений.
Таким образом, в ответ на широкий набор воздействий, убивающих или повреждающих растительные клетки, из их клеточных оболочек высвобождается своеобразный химический курьер, или иммунологический посыльный, который диффундирует в прилегающие клетки, где либо индуцирует образование защитных веществ, либо повышает способность к их образованию.
Таким образом, вновь полученные данные позволяют рассматривать в более широком аспекте вещества, защищающие растения от инфекции. Они позволяют сохранить целостность растениям, поврежденным токсическими химикатами либо физическими воздействиями, поскольку страхуют их от инфекционных болезней. Иммунная система в таких растениях ослаблена, в силу чего поврежденные участки их тканей оказываются незащищенными, через которые инфекция беспрепятственно проникает.
Особое значение приобретают неспецифические свойства фитоалексинов, в силу чего они будут предохранять поврежденные растения от широкого набора потенциально опасных для них патогенов. Ведь мало ли каким патогеном может поразиться поврежденный участок.
Если подходить к защитной роли фитоалексинов с таких позиций, то следует признать, что они в известной мере оправдывают название «стрессовые метаболиты», как их определяют некоторые исследователи. Другое дело, что совсем не все растительные метоболиты, образующиеся в ответ на стресс, обладают антибиотическими свойствами, и поэтому понятие о стрессовых метаболитах шире. Тем не менее, если раньше фитоалексины определяли как индуцированные антибиотические вещества, защищающие растения только от патогенов, то теперь, вероятно, правильнее говорить, что эти вещества защищают растительные ткани от целого ряда стрессовых воздействий, в том числе и от некоторых химических и физических повреждений.