Чтение онлайн

на главную

Жанры

Катастрофы в природе и обществе

Хлебопрос Р. Г.

Шрифт:

Рис.6

(2) Кривая M = f(K) + d1 пересекает биссектрису в трех точках 1, 2, 3. Это происходит при бо'льших значениях d1: при возрастании d1 кривая M = f(K) + d1 поднимается, и при некотором значении d1 = d1a ее выпуклая часть касается биссектрисы, после чего часть этой кривой поднимается над биссектрисой, как это видно на рисунке 7 (верхняя кривая). Мы будем называть число d1a первым критическим значением. Поскольку при больших значениях K эта кривая параллельна прямой M = c1K, образующей с осью K угол меньше 450, то она в конце концов уходит под биссектрису. Тогда кривая M = g(K) в самом

деле пересекает биссектрису в трех точках, которые мы и обозначили через 1, 2, 3.

Рис.7

(3) Кривая M = f(K) + d1, при еще бо'льших значениях d1, пересекает биссектрису опять в единственной точке 3, а точка 1 исчезает (рис.8). В самом деле, если дальше увеличивать d1, то при некотором значении d = d1b (которое мы назовем вторым критическим значением) вогнутая часть кривой касается биссектрисы, а затем поднимается выше нее, так что точки пересечения 1 и 2 исчезают. Но точка пересечения 3 остается, так как при больших значениях K кривая по-прежнему опускается ниже биссектрисы. Концентрация загрязнения K3, равная абсциссе точки 3, в этом случае еще выше, чем в случае (2). Для большинства загрязнителей такой уровень концентрации недопустим.

Рис.8

Важнейшее практическое значение имеет точка устойчивого равновесия 1 – режим, в котором работают все "нормальные" (не экологически преступные) предприятия. Для этой точки надо найти концентрацию загрязнения K1 – ее абсциссу.

Поскольку все наши кривые – эмпирические, требуемое значение K1 находится графически. Это делается, как показано на рисунке 9. Нижняя кривая на этом рисунке – фазовый портрет деструкции М = f(К), верхняя кривая – фазовый портрет непрерывного загрязнения М = g(К), получаемый из предыдущего подъемом на d1. Отложим по оси М вниз от начала координат отрезок ОP0 длины d1, затем проведем через точку Р0 прямую, параллельную биссектрисе, до пересечения с нижней кривой в точке Р1. Тогда вертикальная прямая, проходящая через Р1, пересекает биссектрису в точке, лежащей выше точки Р1 на d1 и, следовательно, принадлежащей верхней кривой; но поскольку точка пересечения верхней кривой с биссектрисой есть не что иное, как точка равновесия 1 (см. рис.6), то мы нашли точку 1. Поэтому абсцисса точки Р1, которую мы обозначим через К1, равна ординате точки 1, а эта последняя состоит из отрезка К1Р1 длины f(К1) и отрезка Р11 длины d11 – то есть K1 = f(K1) + d1, иначе говоря, K1 есть корень уравнения K = f(K) + d1.

Рис.9

Картина экологического бедствия

Концентрация загрязнения, о которой была речь выше, относится, конечно, к определенной точке местности, окружающей предприятие. Рассмотрим простейший случай, когда эта местность однородна, то есть окружающая среда везде одинакова. Тогда реакция этой среды на загрязнение везде одна и та же, то есть во всех точках окружающей местности действует одна и та же фазовая кривая деструкции попавшего в эту точку загрязнения: M = f(K). Напомним, что эта кривая характеризует процесс деструкции исходной концентрации K, каким бы образом она ни образовалась, и зависит только от свойств среды, которую мы считаем однородной.

Величина среднегодового выброса предприятия d1 есть, по определению, концентрация от работы этого предприятия в течение года, измеренная сразу же по истечении этого года, предполагая, что до этого года предприятие не работало. Конечно, результат такого измерения зависит от того, где оно производится: чем дальше от предприятия, тем меньше получается d1, поскольку загрязнение распределяется по большей площади. Для экологической ситуации в точке местности P (рис.10) существенно ее расстояние от предприятия, расположенного в точке 0. Если пренебречь "розой ветров", то есть преимущественными направлениями воздушных потоков, то можно считать, что d1 зависит только от расстояния ОP и является убывающей функцией от него:

d1 = S(OP).

На равном расстоянии от O эта функции постоянна; поэтому на каждой окружности с центром в O она принимает постоянное значение и, следовательно, фазовая функция непрерывного загрязнения g(K) = f(K) + d1 тоже постоянна.

Рис.10

Рассмотрим теперь следующие случаи.

А. В непосредственной близости предприятия О выполняется неравенство d1 < d1a, где d1a – первое критическое значение, введенное в предыдущем параграфе. Поскольку величина d1 – убывающая функция расстояния, это неравенство выполняется везде. Следовательно, везде реализуется случай (1), когда существует только одна точка устойчивого загрязнения 1. Концентрация этого загрязнения K1 убывает при удалении от О, и значение этой концентрации в разных местах надо сравнить с принятыми критериями допустимости – по меньшей мере с таким не слишком надежным критерием, как "предельно допустимая концентрация", характер которого будет рассмотрен ниже.

Б. В непосредственной близости О выполняется неравенство d1a < d1 < d1b, где d1b – второе введенное выше критическое значение. Тогда существует окружность а с центром в О, на которой d1 = d1a, вне которой d1 < d1a, и внутри которой d1a < d1 < d1b. Вне окружности а возможен только случай (1), о чем уже говорилось выше. Внутри этой окружности реализуется случай (2), то есть возможно одно из двух устойчивых загрязнений – 1 или 3. Какая из этих возможностей наблюдается в том или ином месте внутри окружности а, зависит от случая. Поскольку условия местности все же не вполне тождественны (так что наше идеальное предположение, как всегда, соблюдается не совсем точно), то в некоторых частях области внутри а будет концентрация K1, а в других – K3. Эти последние места на рисунке 10 отмечены штриховкой. Часто случается, что в таких местах концентрация превышает предел выносливости растений, и тогда можно наблюдать островки местности, где растительность явно угнетена, среди других, благополучных на вид мест – или наоборот. Такая "лоскутная" структура местности вокруг предприятия, свидетельствующая о наличии устойчивого загрязнения типа 3, есть очевидный признак экологического бедствия.

В. В непосредственной близости О выполняется неравенство d1 >d1b. Тогда существует окружность b (рис.10), на которой d1 = d1b. Следовательно, внутри b возможно только устойчивое загрязнение типа 3, обычно с очень высокой концентрацией K3 (поскольку, как видно из рисунка 8, пересечение фазовой кривой с биссектрисой может быть сколь угодно далеко). В заштрихованном круге наблюдается сплошное угнетение растительности, и люди, работающие на таком предприятии или живущие по соседству с ним, должны знать об угрожающей им опасности.

Между окружностями b и a местность носит "лоскутный" характер – что и наблюдается в ряде случаев. Наконец, вне окружности a внешние признаки отравления местности исчезают; как уже было сказано, это вовсе не значит, что такие места пригодны для обитания человека. Здесь необходимы, как мы увидим, дальнейшие исследования.

Мы предположили выше, что в рассматриваемой местности нет преимущественных направлений ветров. Если такие направления есть, то картина экологического бедствия, изображенная на рисунке 10, искажается, но сохраняет свои качественные особенности. Например, при одном преимущественном направлении ветра вместо окружностей a и b получаются овалы, вытянутые вдоль этого направления.

Экологические особенности России

Мы не можем дать здесь подробный обзор экологического положения России – не только потому, что это вряд ли уместно в общем руководстве, но еще и по той причине, что необходимые для этого данные либо не существуют, либо ненадежны. Поэтому мы ограничимся некоторыми общими замечаниями.

I. Россия необычайно богата экологическими благами: территорией, полезными ископаемыми, водой, лесом, черноземом, и т.д. Если попытаться оценить эти блага, приходящиеся на одного российского гражданина, то получится, что он не менее чем в десять раз богаче среднего обитателя Земли, – даже сейчас, после всех совершенных у нас злодеяний против природы! Читатель, не верящий таким оценкам, может припомнить горькое сравнение Менделеева: нищий на золотом троне.

Поделиться:
Популярные книги

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Колючка для высшего эльфа или сиротка в академии

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Колючка для высшего эльфа или сиротка в академии

Последний попаданец 8

Зубов Константин
8. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 8

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь