Катастрофы в природе и обществе
Шрифт:
Конечно, произведения искусства издавна имели владельцев и рыночную цену. Храм невозможно украсть и спрятать, но во время второй мировой войны многие картины, украденные нацистами, уцелели благодаря их рыночной ценности. Таким образом, даже столь нелепая процедура, как денежная оценка произведений искусства, может быть полезна для их сохранения.
Глава 11. Замкнутые экологические системы и земная биосфера
Как уже было сказано, при неизбежном дальнейшем развитии промышленной цивилизации нельзя рассчитывать на спасительные "регулирующие" силы природы, а надо разрабатывать высокотехнические cиcтемы жизнеобеспечения человека. Для этого понадобятся сложные и необычные методы расчета, которые должны быть вначале опробованы на упрощенных моделях биосферы – искусственных замкнутых экологических системах. Система жизнеобеспечения называется замкнутой, если в ней производится регенерация отходов жизнедеятельности человека, сопутствующих ему организмов, а также отходов, возникающих вследствие
Замкнутые, хотя еще не строго замкнутые системы жизнеобеспечения уже используются: это космические корабли. Проблемы жизнеобеспечения человека в космосе, проектирования космических кораблей и баз на других планетах воспроизводят в миниатюре проблемы перехода к устойчивому развитию в земной биосфере. Ведь и Землю можно рассматривать как космический корабль – только очень большой – и при этом проблема устойчивого развития для Земли оказывается, в некотором смысле, частным случаем общей задачи создания автономной системы жизнеобеспечения для длительных космических миссий. Конечно, это не значит, что можно будет полностью рассчитать "работу" Земли – для сложных систем это невозможно – но ведь и космический корабль с человеческим экипажем не полностью поддается расчету. Все дело в том, за какими параметрами надо следить и какие процессы можно сделать замкнутыми и рассчитать.
Если необходимость сохранения ресурсов для будущих поколений – пока лишь политический лозунг, то при создании космических систем жизнеобеспечения соответствующая задача минимизации запасов расходуемых веществ уже практически важна, поскольку надо уменьшить крайне дорогостоящие, сложные и небезопасные поставки с Земли. Атмосфера в космических кораблях, из-за их скромных размеров, может изменять свой состав в несколько дней, тогда как в земной атмосфере такие процессы заняли бы столетия. Поэтому космические системы жизнеобеспечения и создаваемые для их испытания наземные прототипы, искусственные биосферы, в некоторой степени являются "экологическими машинами времени", позволяющими предвидеть возможное экологическое будущее Земли. Мы рассмотрим в этой главе проблемы энергоснабжения, теплообмена, дыхания и питания людей в космических системах, а затем сделаем заключения о соответствующих процессах на Земле.
Энергетика космических кораблей
В развитии глобального экологического кризиса важная роль принадлежит энергетике, поскольку тип энергетики во многом определяет структуру современного производства. Поэтому надо обсудить, каким образом сейчас решаются проблемы энергообеспечения в космосе – тем более, что технические решения в области космонавтики пользуются заслуженно высоким авторитетом и рассматриваются как передовые.
В космосе используются химическая, солнечная и ядерная энергия, каждая их которых имеет свою область применения, где она необходима или выгоднее других. С инженерной точки зрения различают "ближний космос", то есть непосредственную окрестность Земли, "средний космос" – от Меркурия до пояса астероидов, и "дальний космос" – за астероидами. Зона между Солнцем и Меркурием пока не исследуется и представляет особые трудности, из-за сильного тяготения Солнца и интенсивного облучения.
Химическая энергетика, основанная на процессах окисления, то есть на сжигании топлива, используется лишь при старте и посадке космических кораблей, когда требуется высокая "пиковая мощность" – большая выдача энергии в короткое время. До сих пор космические корабли стартовали лишь с Земли и садились на Землю, спуская на другие небесные тела небольшие "модули", тоже на химическом топливе, так что химическая энергия применялась главным образом в ближнем космосе; но при посадке кораблей на Луну и планеты также возникнет проблема пиковой мощности, которую мы пока умеем решать лишь с помощью химической энергии. Соответствующие ей системы, содержащие вредные вещества, выносятся за оболочку систем жизнеобеспечения человека. Все же известен случай с американскими космонавтами, когда из-за разгерметизации кабины произошло отравление экипажа продуктами сгорания топлива, к счастью, без летального исхода; после этого были приняты дальнейшие меры для разнесения зоны обитания экипажа и систем топливной энергетики.
В условиях космоса топливная энергетика не может конкурировать с солнечной – в среднем космосе, где солнечное излучение достаточно сильно. В самом деле, солнечная батарея площадью около квадратного метра и весом в десять килограммов способна десятки лет давать электроэнергию мощностью в сто ватт. Если же взять с собой, например, четыре килограмма керосина, требующих для своего окисления шесть килограммов кислорода (который на Земле берется из атмосферы, а в космос его надо везти вместе с керосином), то эти десять килограммов химических веществ способны дать около восьми тысяч килокалорий тепловой энергии, из которой можно получить в лучшем случае примерно двенадцать тысяч килоджоулей электроэнергии – столько же, сколько дает описанная выше стоваттная солнечная батарея за восемь суток. Самые лучшие топлива, такие, как водород, при том же общем весе вместе с кислородом в десять килограммов, дали бы столько же энергии, сколько стоваттная солнечная батарея за полмесяца. Из приведенных оценок понятно, насколько топливная энергетика неконкурентоспособна в условиях космоса. В действительности для открытого космоса, где можно избежать "пиковых" нагрузок, химическая энергетика (за исключением электрических аккумуляторов и батарей) даже не планируется. Преимущества солнечной энергии перед химической, столь очевидно демонстрируемые в космосе, могут послужить хорошим уроком и для Земли.
Солнечная энергия не только может обеспечить все жизненные потребности экипажа: есть реалистические проекты ее применения для движения межпланетных кораблей в открытом космосе, с помощью ионных двигателей. В таких двигателях электрическая энергия используется для разгона тяжелых частиц (ионов), например, ионов цезия или ртути, выбрасываемых с большой скоростью в направлении, противоположном требуемому курсу ракеты, наподобие струи газов химического реактивного двигателя. Приращение энергии ракеты пропорционально квадрату скорости ионной струи (вспомните формулу для кинетической энергии E=mv2/2), но, поскольку запас ионного топлива ограничен, выбирается оптимальная скорость выбрасывания частиц; например, для полета к Марсу, продолжительность которого составит около шести месяцев, эта скорость должна быть равна 40 км/сек. Для получения такой энергии понадобятся солнечные батареи большой площади, напоминающие паруса, которые будут распускаться в космосе, так что космический корабль с ионным двигателем будет странным образом похож на парусные корабли – причем его паруса не будут испытывать сопротивления воздуха! Вес батарей, со всеми устройствами, составил бы сейчас около 120 кг на 1 квт мощности, но может быть во много раз уменьшен.
До сих пор солнечные батареи применяются лишь для снабжения энергией экипажа и приборов. К сожалению, интенсивность солнечного излучения резко убывает при удалении от Солнца – обратно пропорционально квадрату расстояния. При приближении к Солнцу она столь же быстро возрастает. На орбите Венеры солнечные батареи вдвое более эффективны, чем на Земле; на орбите Марса их эффективность, напротив, падает более чем вдвое, а на орбите Юпитера более чем в двадцать раз. Поэтому солнечная энергия применима только в среднем коcмосе. Ядерная энергия дает б`oльшую мощность на единицу веса двигателя, но при значительном усложнении охлаждения. Она выгодна лишь в дальнем космосе, где солнечной энергии не хватает. Например, в полете "Вояджера" для далеких расстояний использовался радиоактивный источник. Ядерную энергию пытались применить также на околоземных спутниках, но сейчас это считается крайне нежелательным. В самом деле, пока корабль остается в космосе, его ядерный двигатель никому не угрожает; но низколетающие орбитальные спутники, если их не снять с орбиты, в конце концов падают на Землю – даже при попытке мягкой посадки возможны аварии – и в таких случаях радиоактивное топливо рассеивается в атмосфере. Были три аварии с американскими ядерными источниками (наиболее известен случай с "Аполлоном-13"), при которых загрязнений окружающей среды не произошло. Из советских аварий с ядерными источниками наиболее известен случай со спутником "Космос-1402", когда при входе спутника в атмосферу ядерное топливо рассеялось по поверхности Земли. Впрочем, следует иметь в виду, что равномерное распыление нескольких килограммов радиоактивных веществ по поверхности всей планеты не может сколько-нибудь заметно повысить ее естественный радиоактивный фон, который отнюдь не исчезающе низок.
С энергообеспечением космических кораблей тесно связана проблема перегрева их атмосферы. Системы жизнеобеспечения крайне нежелательно насыщать энергией сверх необходимого уровня, поскольку вся поступающая энергия в конечном счете переходит в тепло, которое нужно выводить из системы. Все космические корабли, независимо от их размеров и конструкции (а значит и Земля – гигантский космический корабль!) имеют только одну возможность освободиться от избыточного тепла – излучить его в космос; это называется радиационным отводом тепла. По закону Стефана – Больцмана, интенсивность излучения любого "абсолютно черного" тела пропорциональна четвертой степени его температуры; напомним, что тело называется "абсолютно черным", если оно поглощает все падающее на него излучение (что можно считать приближенно справедливым для интересующих нас космических объектов), а температура отсчитывается по шкале Кельвина, от 273°С ниже нуля. Поскольку обычная температура, при которой мы живем на поверхности Земли, поддерживается также в жилых помещениях космических ракет и примерно равна 3000 Кельвина, тот же расчет, что и в главе 4, показывает, что при увеличении тепловой энергии ракеты на 1% ее температура повышается на 0,75°.
Чтобы тепловая энергия могла быть излучена в космос, ее надо доставить к стенкам корабля. Для этого в космических кораблях имеется система охлаждения, составляющая значительную часть систем корабля (100 – 200 кг на киловатт отводимого тепла, что превосходит вес солнечных батарей). В принципе можно концентрировать избыточное тепло (на что надо затрачивать дополнительную энергию) и подавать его на специальные излучатели с искусственно поднятой температурой, где охлаждение идет намного эффективнее: в самом деле, при более высокой температуре, по закону Стефана – Больцмана, излучение энергии возрастает. Для Земли это, конечно, нереально. Но для космических кораблей эта задача в последнее время успешно решается – и у нас, и за границей. Японцы сообщают, что они снизили вес охлаждающих устройств до 2 кг на 1 киловатт отводимого тепла.