Кентерберийские головоломки
Шрифт:
Решением в общем случае будет у п( п– 1)(3 п 2– п+2). Это, разумеется, эквивалентно тому, как если бы мы сказали, что при условии, что на стороне «шахматной доски» расположено пклеток, на ней можно разместить двух слонов указанным числом способов, при которых они не атакуют друг друга. Только в таком случае ответ нужно было бы уменьшить вдвое, поскольку два слона не отличаются друг от друга, и, поменяв их местами, мы не получим нового решения.
146.Наименьшее возможное число коней при данных условиях равно 14. Иногда полагают, что существует очень много различных решений. Кстати,
Семь коней можно расположить на белых клетках так, чтобы они атаковали каждую черную клетку лишь двумя способами. Они показаны на рисунках 1и 2.Обратите внимание, что в обоих случаях 3 коня занимают одинаковые положения. Следовательно, ясно, что если вы повернете доску так, чтобы в левом верхнем углу оказалась черная клетка, и поставите коней на те же самые места, то у вас получатся два похожих способа атаки всех белых квадратов.
Я предположу, что читатель выполнил два последних описанных рисунка на кальке, и обозначу их 1а и 2а. Теперь, наложив рисунок 1а на рисунок 1,вы получите решение на рисунке 3,наложив рисунок 2а на рисунок 2, вы получите рисунок 4,а наложив рисунок 2а на рисунок 1,получите рисунок 5.Вы можете теперь перебрать все возможные комбинации этих двух пар рисунков, и при этом вы получите лишь те 3 решения, которые я привел, а также решения, получающиеся из них с помощью поворотов и отражений. Следовательно, существуют только эти 3 решения.
147. Два единственно возможных минимальных решения приведены на двух рисунках, где, как можно заметить, требуется лишь 16 ходов. Для большинства окажется трудным сделать число ходов меньше 17.
148. Путь показан на рисунке. Можно заметить, что десятый ход приводит нас в клетку, отмеченную числом 10,а последний, 21-й, ход заканчивается в клетке 21.
149. Пунктирная линия показывает путь, состоящий из 22 прямолинейных отрезков, которым рыцарь добрался до девы. Необходимо, войдя в первую камеру, немедленно вернуться назад прежде, чем войти в другую камеру. Иначе вам не удастся найти решение.
150. Если узник выберет путь, показанный на рисунке, где для простоты не изображены двери, то он посетит каждую камеру ровно по одному разу, пройдя 57 прямолинейных участков. Ни при каком пути ладьи по шахматной доске нельзя превзойти это число.
151.
Далее, мы обнаружим, что, двигаясь с постоянной скоростью, они никогда не окажутся в иоле зрения друг друга. Однако на рисунке можно заметить, что лев и человек оказываются в камерах, обозначенных буквой А,одновременно и, следовательно, могут увидеть друг друга через открытые двери. То же происходит, когда они оказываются в камерах В, причем верхние буквы в обоих случаях показывают положение человека, а нижние – положение льва. В первом случае лев устремляется прямо к человеку, тогда как человек, кажется, пытается зайти ко льву с тыла. Второй случай несколько более подозрителен, ибо похоже, что они здесь удирают друг от друга!
152. Я показал на рисунке, каким образом слон может посетить каждое из намеченных мест за 17 ходов. Очевидно, что мы должны начать с одного углового квадрата и закончить в диагонально противоположном «Головоломку нельзя решить за меньшее число ходов.
153. Передвигайте шашки следующим образом: 2–3, 9–4, 10 – 7, 3–8, 4–2, 7–5, 8–6, 5 – 10, 6–9, 2–5, 1–6, 6–4, 5–3, 10 – 8, 4–7, 3–2, 8–1, 7 – 10.Теперь белые шашки поменялись местами с красными за 18 ходов при соблюдении заданных условий.
154. Играйте следующим образом, используя обозначения, основанные на нумерации клеток на рисунке А.
На рисунке Бпоказано положение после девятого хода. Слоны на клетках 1и 20еще не ходили, но 2и 19уже двигались вперед, а затем вернулись назад. В конце 1и 19, 2и 20, 3и 17и 4и 18поменяются местами. Обратите внимание на позицию после тринадцатого хода.
155. На приведенном рисунке показан второй вариант турне ферзя. Если вы прервете линию в точке Jи уберете более короткий участок этой прямой, то получите искомый путь для любой клетки J.
Если вы прервете линию в J, то получите невозвратное решение, начинающееся из любой клетки J. А если вы прервете линию в G,то получите решение для любой клетки G.Ранее приведенное турне ферзя можно также прервать в трех различных местах, однако я воспользовался возможностью привести второе турне.