Кибервойны ХХI века. О чем умолчал Эдвард Сноуден
Шрифт:
3.3. Прогностические вооружения и Большие Данные
Прогнозирование в сфере высшей политики, экономики и военного дела всегда имело амбивалентную, а по-русски говоря, двойственную природу. С одной стороны прогнозирование являлось важнейшей стадией разработки ключевых стратегических, тактических и оперативных решений тех или иных проблем и задач, разработки и реализации крупных проектов и военных компаний. С другой стороны, прогнозирование, подкрепленное мощным информационно-пропагандистским аппаратом, само по себе выступало как своеобразный вид вооружения, способ формирования будущего.
После знаменитых экспериментов
Поэтому вполне очевидно, что с развитием интернета и появлением Больших Данных, представляющих собой, в том числе и огромный поведенческий архив, возникло желание максимально использовать открывающиеся возможности для разработки прогностических вооружений.
При этом к началу нулевых годов профессионалам, работающим в этой сфере, были ясны, по меньшей мере, три фундаментальных положения:
• во-первых, используя самые изощренные и эффективные методы, можно прогнозировать процессы, но не события;
• во-вторых, прогнозы с высокой степенью вероятности можно делать в отношении групп различной размерности, но не отдельных индивидуумов;
• в-третьих, знания о действиях групп и индивидуумов в одной ситуации не позволяет давать точные прогнозы о подобных действиях, осуществляемых в другой ситуации.
Соответственно, оказалось, что различного рода прогнозы, базирующиеся на традиционных выборках, построении сценариев, экстраполяции попросту не работают.
Развитие интернета дало возможность оперировать Большими Данными относительно человеческого поведения, намерений, желаний и т. п. В этой связи специалист номер один в мире по интеллектуальному анализу данных Г. Пятецкий-Шапиро писал: «Прогнозирование на основе Больших Данных состоит в извлечении нетривиальных выводов из заранее известных характеристик, признаков и сведений об объектах».
Использование интернета, как огромного, пополняемого в режиме он-лайн поведенческого архива для прогнозирования развивается по трем ключевым направлениям:
• первое — это прямой интеллектуальный анализ общедоступных данных, предоставляемых поисковыми системами и различного рода социальными сетями и платформами;
• второе — это создание рекомендательных систем, которые прогнозируют различного рода выбор субъектов и групп, и на этой основе рекомендуют им что угодно — от книг до кандидатов в президенты;
• третье — это сложные прогностические системы, использующие разнородные данные, получаемые из открытой и закрытой части всемирной сети, обрабатываемые с помощью всего арсенала интеллектуального анализа данных.
Исторически главный упор был сделан на работу с общедоступными интернет-данными из социальных сетей и поисковых машин. Еще два-три года назад никто не мог помыслить о том, что инструменты веб-прогнозирования будут в благожелательном ключе обсуждаться на сайте головного банка ФРС. Но это произошло. Первым делом, как всегда бывает, за дело взялись академические исследователи, которые в Америке очень даже прагматически настроены и заинтересованы в максимально быстром внедрении их научных разработок в практику. В октябре 2010 г. в кругах инвестиционных аналитиков прогремел доклад Johan Bollen, Huina Mao (Indiana Unviersity), Xiao-Jun Zeng (The University of Manchester) «Twitter mood predicts the stock market».
Ими была сделана программа, которая позволяла использовать сообщения Twitter для прогнозирования движения индекса Dow Jones. Алгоритм работал следующим образом — отбирал из всех Twitter сообщений в режиме реального времени сообщения, маркированные определенными словами, затем удалял эмоционально окрашенные сообщения и на основе обработки нейтральных, эмоционально не окрашенных сообщений выдавал прогноз. Выяснилось, что он позволил предсказывать движение индекса на срок от двух до шести дней с точностью почти до 88 %.
Большое признание в последнее время в Америке получили разработки Р. Петерссона, исследователя из Стэндфордского университета. В качестве неструктурированных данных для прогнозирования он использовал не Twitter, а контент социальных СМИ, т. е. платформ, где контент создают сами пользователи. Таких платформ с качественным контентом в англоязычном интернете насчитывается сотни.
Его исследования были восприняты компанией MarketPsych. Был создан прогностический модуль. Он уверенно дает при достаточно консервативной стратегии 30 % прибыли в год. В настоящее время эта компания приобретена крупнейшим информационным провайдером, всемирно известным Thompson Reuters. Соответственно прогнозы получают подписчики Thompson Reuters, интересующиеся инвестиционной и политической тематикой.
Совсем недавно за разработку системы, аккумулирующей информацию Twitter для трейдинга, взялась компания Titan Trading Analytics. В своей системе они используют 1500 ключевых слов и более 600 факторов. Как видим, создание и практическое использование программ прогнозирования, базирующихся на неструктурированных данных web 2 и прежде всего Twitter, стало сегодня повсеместной практикой инвестиционных, макроэкономических и политических аналитиков.
Огромную роль в современном геополитическом, военном и инвестиционном прогнозировании играют общедоступные данные, связанные с частотой поисковых запросов, которые постоянно публикуют главные поисковики мира, прежде всего, Google и Bing. В нынешней реальности любой поисковый запрос представляет собой фиксацию процесса мышления о чем-то. Он показывает нам объект этого мышления, его последовательность и многое другое. Когда интернет с одной стороны стал доступен для подавляющего большинства жителей в развитых странах в режиме онлайн нон-стоп, а с другой, пользователи приучились к интернету, как к источнику мгновенного получения любой интересующей информации, использование поисковиков для прогнозирования стало возможным.
К настоящему времени независимыми группами исследователей, использующих различные методы и алгоритмы обработки поисковых запросов в целях прогнозирования установлено, что особым образом обработанная статистика поисковых запросов может выполнять роль опережающих индикаторов для целого ряда рынков и экономических параметров. В частности, это относится к динамике безработицы в США, Германии, Франции; динамике потребительских расходов на рынках электроники США, странах ЕЭС, Канаде; ценам на недвижимость США и Великобритании; биржевым индексам на «голубые фишки» на Нью-Йоркской и Лондонской биржах и фьючерсам на биржевой индекс китайских акций на Гонконгской бирже.